blob: a1c4c8f3f6fe9134877fbf15d648e4c12d12168d (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
|
(* Title: HoTT/Proj.thy
Author: Josh Chen
Projection functions \<open>fst\<close> and \<open>snd\<close> for the dependent sum type.
*)
theory Proj
imports
HoTT_Methods
Prod
Sum
begin
definition fst :: "Term \<Rightarrow> Term" where "fst(p) \<equiv> ind\<^sub>\<Sum> (\<lambda>x y. x) p"
definition snd :: "Term \<Rightarrow> Term" where "snd(p) \<equiv> ind\<^sub>\<Sum> (\<lambda>x y. y) p"
text "Typing judgments and computation rules for the dependent and non-dependent projection functions."
lemma fst_type:
assumes "\<Sum>x:A. B(x): U(i)" and "p: \<Sum>x:A. B(x)" shows "fst(p): A"
unfolding fst_def by (derive lems: assms)
lemma fst_comp:
assumes "A: U(i)" and "B: A \<longrightarrow> U(i)" and "a: A" and "b: B(a)" shows "fst(<a,b>) \<equiv> a"
unfolding fst_def
proof compute
show "a: A" and "b: B(a)" by fact+
qed (routine lems: assms)+
lemma snd_type:
assumes "\<Sum>x:A. B(x): U(i)" and "p: \<Sum>x:A. B(x)" shows "snd(p): B(fst p)"
unfolding snd_def
proof
show "\<And>p. p: \<Sum>x:A. B(x) \<Longrightarrow> B(fst p): U(i)" by (derive lems: assms fst_type)
fix x y
assume asm: "x: A" "y: B(x)"
show "y: B(fst <x,y>)"
proof (subst fst_comp)
show "A: U(i)" by (wellformed lems: assms(1))
show "\<And>x. x: A \<Longrightarrow> B(x): U(i)" by (wellformed lems: assms(1))
qed fact+
qed fact
lemma snd_comp:
assumes "A: U(i)" and "B: A \<longrightarrow> U(i)" and "a: A" and "b: B(a)" shows "snd(<a,b>) \<equiv> b"
unfolding snd_def
proof compute
show "\<And>x y. y: B(x) \<Longrightarrow> y: B(x)" .
show "a: A" by fact
show "b: B(a)" by fact
qed (routine lems: assms)
text "Rule attribute declarations:"
lemmas Proj_type [intro] = fst_type snd_type
lemmas Proj_comp [comp] = fst_comp snd_comp
end
|