1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
|
(* Title: HoTT/Proj.thy
Author: Josh Chen
Date: Jun 2018
Projection functions \<open>fst\<close> and \<open>snd\<close> for the dependent sum type.
*)
theory Proj
imports
HoTT_Methods
Prod
Sum
begin
consts
fst :: "[Term, 'a] \<Rightarrow> Term" ("(1fst[/_,/ _])")
snd :: "[Term, 'a] \<Rightarrow> Term" ("(1snd[/_,/ _])")
section \<open>Overloaded syntax for dependent and nondependent pairs\<close>
overloading
fst_dep \<equiv> fst
fst_nondep \<equiv> fst
begin
definition fst_dep :: "[Term, Typefam] \<Rightarrow> Term" where
"fst_dep A B \<equiv> \<^bold>\<lambda>p: (\<Sum>x:A. B x). indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) p"
definition fst_nondep :: "[Term, Term] \<Rightarrow> Term" where
"fst_nondep A B \<equiv> \<^bold>\<lambda>p: A \<times> B. indSum[A, \<lambda>_. B] (\<lambda>_. A) (\<lambda>x y. x) p"
end
overloading
snd_dep \<equiv> snd
snd_nondep \<equiv> snd
begin
definition snd_dep :: "[Term, Typefam] \<Rightarrow> Term" where
"snd_dep A B \<equiv> \<^bold>\<lambda>p: (\<Sum>x:A. B x). indSum[A,B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) p"
definition snd_nondep :: "[Term, Term] \<Rightarrow> Term" where
"snd_nondep A B \<equiv> \<^bold>\<lambda>p: A \<times> B. indSum[A, \<lambda>_. B] (\<lambda>_. B) (\<lambda>x y. y) p"
end
section \<open>Properties\<close>
text "Typing judgments and computation rules for the dependent and non-dependent projection functions."
lemma fst_dep_type:
assumes "p : \<Sum>x:A. B x"
shows "fst[A,B]`p : A"
by (derive lems: assms unfolds: fst_dep_def)
lemma fst_dep_comp:
assumes "B: A \<rightarrow> U" and "a : A" and "b : B a"
shows "fst[A,B]`(a,b) \<equiv> a"
proof -
have "fst[A,B]`(a,b) \<equiv> indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) (a,b)"
by (derive lems: assms unfolds: fst_dep_def)
also have "indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) (a,b) \<equiv> a"
by (derive lems: assms)
finally show "fst[A,B]`(a,b) \<equiv> a" .
qed
text "In proving results about the second dependent projection function we often use the following lemma."
lemma lem:
assumes "B: A \<rightarrow> U" and "x : A" and "y : B x"
shows "y : B (fst[A,B]`(x,y))"
proof -
have "fst[A,B]`(x,y) \<equiv> x" using assms by (rule fst_dep_comp)
then show "y : B (fst[A,B]`(x,y))" using assms by simp
qed
lemma snd_dep_type:
assumes "p : \<Sum>x:A. B x"
shows "snd[A,B]`p : B (fst[A,B]`p)"
proof (derive lems: assms unfolds: snd_dep_def)
show "fst[A, B] : (\<Sum>x:A. B x) \<rightarrow> A" by (derive lems: assms unfolds: fst_dep_def)
fix x y assume asm: "x : A" "y : B x"
have "B: A \<rightarrow> U" by (wellformed jdgmt: assms)
then show "y : B (fst[A, B]`(x,y))" using asm by (rule lem)
qed (assumption | rule assms)+
lemma snd_dep_comp:
assumes "B: A \<rightarrow> U" and "a : A" and "b : B a"
shows "snd[A,B]`(a,b) \<equiv> b"
proof -
have "snd[A,B]`(a,b) \<equiv> indSum[A, B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) (a,b)"
proof (derive lems: assms unfolds: snd_dep_def)
show "fst[A, B] : (\<Sum>x:A. B x) \<rightarrow> A" by (derive lems: assms unfolds: fst_dep_def)
fix x y assume asm: "x : A" "y : B x"
with assms(1) show "y : B (fst[A, B]`(x,y))" by (rule lem)
qed (assumption | derive lems: assms)+
also have "indSum[A, B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) (a,b) \<equiv> b"
proof (simple lems: assms)
show "fst[A, B] : (\<Sum>x:A. B x) \<rightarrow> A" by (derive lems: assms unfolds: fst_dep_def)
fix x y assume "x : A" and "y : B x"
with assms(1) show "y : B (fst[A,B]`(x,y))" by (rule lem)
qed (assumption | rule assms)+
finally show "snd[A,B]`(a,b) \<equiv> b" .
qed
text "For non-dependent projection functions:"
lemma fst_nondep_type:
assumes "p : A \<times> B"
shows "fst[A,B]`p : A"
by (derive lems: assms unfolds: fst_nondep_def)
lemma fst_nondep_comp:
assumes "a : A" and "b : B"
shows "fst[A,B]`(a,b) \<equiv> a"
proof -
have "fst[A,B]`(a,b) \<equiv> indSum[A, \<lambda>_. B] (\<lambda>_. A) (\<lambda>x y. x) (a,b)"
by (derive lems: assms unfolds: fst_nondep_def)
also have "indSum[A, \<lambda>_. B] (\<lambda>_. A) (\<lambda>x y. x) (a,b) \<equiv> a"
by (derive lems: assms)
finally show "fst[A,B]`(a,b) \<equiv> a" .
qed
lemma snd_nondep_type:
assumes "p : A \<times> B"
shows "snd[A,B]`p : B"
proof
show "snd[A,B] : A \<times> B \<rightarrow> B"
proof (derive unfolds: snd_nondep_def)
fix q assume asm: "q : A \<times> B"
show "indSum[A, \<lambda>_. B] (\<lambda>_. B) (\<lambda>x y. y) q : B" by (derive lems: asm)
qed (wellformed jdgmt: assms)+
qed (rule assms)
lemma snd_nondep_comp:
assumes "a : A" and "b : B"
shows "snd[A,B]`(a,b) \<equiv> b"
proof -
have "snd[A,B]`(a,b) \<equiv> indSum[A, \<lambda>_. B] (\<lambda>_. B) (\<lambda>x y. y) (a,b)"
by (derive lems: assms unfolds: snd_nondep_def)
also have "indSum[A, \<lambda>_. B] (\<lambda>_. B) (\<lambda>x y. y) (a,b) \<equiv> b"
by (derive lems: assms)
finally show "snd[A,B]`(a,b) \<equiv> b" .
qed
end
|