blob: 05b0bfe60785d9305270b6a18f8d4b113bfb938c (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
|
(* Title: HoTT/Nat.thy
Author: Josh Chen
Date: Aug 2018
Natural numbers.
*)
theory Nat
imports HoTT_Base
begin
section ‹Constants and type rules›
axiomatization
Nat :: Term ("ℕ") and
zero :: Term ("0") and
succ :: "Term ⇒ Term" and
indNat :: "[[Term, Term] ⇒ Term, Term, Term] ⇒ Term" ("(1ind⇩ℕ)")
where
Nat_form: "ℕ: U(O)"
and
Nat_intro1: "0: ℕ"
and
Nat_intro2: "n: ℕ ⟹ succ(n): ℕ"
and
Nat_elim: "⟦
C: ℕ ⟶ U(i);
⋀n c. ⟦n: ℕ; c: C(n)⟧ ⟹ f(n)(c): C(succ n);
a: C(0);
n: ℕ
⟧ ⟹ ind⇩ℕ(f)(a)(n): C(n)"
and
Nat_comp1: "⟦
C: ℕ ⟶ U(i);
⋀n c. ⟦n: ℕ; c: C(n)⟧ ⟹ f(n)(c): C(succ n);
a: C(0)
⟧ ⟹ ind⇩ℕ(f)(a)(0) ≡ a"
and
Nat_comp2: "⟦
C: ℕ ⟶ U(i);
⋀n c. ⟦n: ℕ; c: C(n)⟧ ⟹ f(n)(c): C(succ n);
a: C(0);
n: ℕ
⟧ ⟹ ind⇩ℕ(f)(a)(succ n) ≡ f(n)(ind⇩ℕ f a n)"
text "Rule declarations:"
lemmas Nat_intro = Nat_intro1 Nat_intro2
lemmas Nat_rules [intro] = Nat_form Nat_intro Nat_elim Nat_comp1 Nat_comp2
lemmas Nat_comps [comp] = Nat_comp1 Nat_comp2
end
|