aboutsummaryrefslogtreecommitdiff
path: root/HoTT_Theorems.thy
blob: 1ac44848faef55cff1adfef088d7d07ece451ee6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
theory HoTT_Theorems
  imports HoTT
begin

text "A bunch of theorems and other statements for sanity-checking, as well as things that should be automatically simplified.

Things that *should* be automated:
  \<bullet> Checking that \<open>A\<close> is a well-formed type, when writing things like \<open>x : A\<close> and \<open>A : U\<close>.
  \<bullet> Checking that the argument to a (dependent/non-dependent) function matches the type? Also the arguments to a pair?
"

\<comment> \<open>Turn on trace for unification and the simplifier, for debugging.\<close>
declare[[unify_trace_simp, unify_trace_types, simp_trace, simp_trace_depth_limit=1]]

section \<open>Functions\<close>

subsection \<open>Typing functions\<close>

text "Declaring \<open>Prod_intro\<close> with the \<open>intro\<close> attribute (in HoTT.thy) enables \<open>standard\<close> to prove the following."                                                   

lemma "\<^bold>\<lambda>x:A. x : A\<rightarrow>A" ..

proposition "A \<equiv> B \<Longrightarrow> \<^bold>\<lambda>x:A. x : B\<rightarrow>A"
proof -
  assume assm: "A \<equiv> B"
  have id: "\<^bold>\<lambda>x:A. x : A\<rightarrow>A" ..
  from assm have "A\<rightarrow>A \<equiv> B\<rightarrow>A" by simp
  with id show "\<^bold>\<lambda>x:A. x : B\<rightarrow>A" ..
qed

proposition "\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B. x : A\<rightarrow>B\<rightarrow>A"
proof
  fix a
  assume "a : A"
  then show "\<^bold>\<lambda>y:B. a : B \<rightarrow> A" .. 
qed

subsection \<open>Function application\<close>

proposition "a : A \<Longrightarrow> (\<^bold>\<lambda>x:A. x)`a \<equiv> a" by simp

text "Currying:"

lemma "\<lbrakk>a : A; b : B\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B. y)`a`b \<equiv> b" by simp

lemma "a : A \<Longrightarrow> (\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). f x y)`a \<equiv> \<^bold>\<lambda>y:B(a). f a y" by simp

lemma "\<lbrakk>a : A; b : B(a); c : C(a)(b)\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). \<^bold>\<lambda>z:C(x)(y). f x y z)`a`b`c \<equiv> f a b c" by simp

proposition wellformed_currying:
  fixes
    A::Term and
    B::"Term \<Rightarrow> Term" and
    C::"Term \<Rightarrow> Term \<Rightarrow> Term"
  assumes
    "A : U" and
    "B: A \<rightarrow> U" and
    "\<And>x::Term. C(x): B(x) \<rightarrow> U"
  shows "\<Prod>x:A. \<Prod>y:B(x). C x y : U"
proof (rule Prod_formation)
  fix x::Term
  assume *: "x : A"
  show "\<Prod>y:B(x). C x y : U"
  proof (rule Prod_formation)
    show "B(x) : U" using * by (rule assms)
  qed (rule assms)
qed (rule assms)

proposition triply_curried:
  fixes
    A::Term and
    B::"Term \<Rightarrow> Term" and
    C::"[Term, Term] \<Rightarrow> Term" and
    D::"[Term, Term, Term] \<Rightarrow> Term"
  assumes
    "A : U" and
    "B: A \<rightarrow> U" and
    "\<And>x y::Term. y : B(x) \<Longrightarrow> C(x)(y) : U" and
    "\<And>x y z::Term. z : C(x)(y) \<Longrightarrow> D(x)(y)(z) : U"
  shows "\<Prod>x:A. \<Prod>y:B(x). \<Prod>z:C(x)(y). D(x)(y)(z) : U"
proof (rule Prod_formation)
  fix x::Term assume 1: "x : A"
  show "\<Prod>y:B(x). \<Prod>z:C(x)(y). D(x)(y)(z) : U"
  proof (rule Prod_formation)
    show "B(x) : U" using 1 by (rule assms)
    
    fix y::Term assume 2: "y : B(x)"  
    show "\<Prod>z:C(x)(y). D(x)(y)(z) : U"
    proof (rule Prod_formation)
      show "C x y : U" using 2 by (rule assms)
      show "\<And>z::Term. z : C(x)(y) \<Longrightarrow> D(x)(y)(z) : U" by (rule assms)
    qed
  qed
qed (rule assms)

lemma curried_type:
  fixes
    a b A::Term and
    B::"Term \<Rightarrow> Term" and
    f C::"[Term, Term] \<Rightarrow> Term"
  assumes "\<And>x y::Term. \<lbrakk>x : A; y : B(x)\<rbrakk> \<Longrightarrow> f x y : C x y"
  shows "\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). f x y : \<Prod>x:A. \<Prod>y:B(x). C x y"
proof
  fix x::Term
  assume *: "x : A"
  show "\<^bold>\<lambda>y:B(x). f x y : \<Prod>y:B(x). C x y"
  proof
    fix y::Term
    assume **: "y : B(x)"
    show "f x y : C x y" using * ** by (rule assms)
  qed
qed

text "Note that the propositions and proofs above often say nothing about the well-formedness of the types, or the well-typedness of the lambdas involved; one has to be very explicit and prove such things separately!
This is the result of the choices made regarding the premises of the type rules."

text "The following shows that the dependent sum inductor has the type we expect it to have:"

lemma
  assumes "C: \<Sum>x:A. B(x) \<rightarrow> U"
  shows "indSum(C) : \<Prod>f:(\<Prod>x:A. \<Prod>y:B(x). C((x,y))). \<Prod>p:(\<Sum>x:A. B(x)). C(p)"
proof -
  define F and P where
    "F \<equiv> \<Prod>x:A. \<Prod>y:B(x). C((x,y))" and
    "P \<equiv> \<Sum>x:A. B(x)"

  have "\<^bold>\<lambda>f:F. \<^bold>\<lambda>p:P. indSum(C)`f`p : \<Prod>f:F. \<Prod>p:P. C(p)"
  proof (rule curried_type)
    fix f p::Term
    assume "f : F" and "p : P"
    with assms show "indSum(C)`f`p : C(p)" unfolding F_def P_def ..
  qed
  
  then show "indSum(C) : \<Prod>f:F. \<Prod>p:P. C(p)" by simp
qed

text "Polymorphic identity function."

consts Ui::Term

definition Id where "Id \<equiv> \<^bold>\<lambda>A:Ui. \<^bold>\<lambda>x:A. x"
(* Have to think about universes... *)

section \<open>Nats\<close>

text "Here's a dumb proof that 2 is a natural number."

proposition "succ(succ 0) : Nat"
  proof -
    have "0 : Nat" by (rule Nat_intro1)
    from this have "(succ 0) : Nat" by (rule Nat_intro2)
    thus "succ(succ 0) : Nat" by (rule Nat_intro2)
  qed

text "We can of course iterate the above for as many applications of \<open>succ\<close> as we like.
The next thing to do is to implement induction to automate such proofs.

When we get more stuff working, I'd like to aim for formalizing the encode-decode method to be able to prove the only naturals are 0 and those obtained from it by \<open>succ\<close>."

end