blob: 9987b7839f7764fc013a322744cf076e622c528a (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
|
(********
Isabelle/HoTT: Basic logical definitions and notation
Feb 2019
This file completes the basic logical and functional setup of the HoTT logic. It defines:
* The universe hierarchy and its governing rules.
* Some notational abbreviations.
* Named theorems for later use by proof methods.
********)
theory HoTT_Base
imports Pure
begin
section \<open>Basic setup\<close>
declare[[names_short]]
declare[[eta_contract=false]] \<comment> \<open>Do not eta-contract\<close>
typedecl t \<comment> \<open>Type of object-logic terms (which includes the types)\<close>
judgment has_type :: "[t, t] \<Rightarrow> prop" ("(2_ :/ _)")
section \<open>Universes\<close>
typedecl ord \<comment> \<open>Type of meta-numerals\<close>
axiomatization
O :: ord and
Suc :: "ord \<Rightarrow> ord" and
lt :: "[ord, ord] \<Rightarrow> prop" (infix "<" 999) and
leq :: "[ord, ord] \<Rightarrow> prop" (infix "\<le>" 999)
where
lt_Suc: "n < (Suc n)" and
lt_trans: "\<lbrakk>m1 < m2; m2 < m3\<rbrakk> \<Longrightarrow> m1 < m3" and
leq_min: "O \<le> n"
declare
lt_Suc [intro!]
leq_min [intro!]
lt_trans [intro]
axiomatization
U :: "ord \<Rightarrow> t"
where
U_hierarchy: "i < j \<Longrightarrow> U i: U j" and
U_cumulative: "\<lbrakk>A: U i; i < j\<rbrakk> \<Longrightarrow> A: U j" and
U_cumulative': "\<lbrakk>A: U i; i \<le> j\<rbrakk> \<Longrightarrow> A: U j"
lemma U_hierarchy': "U i: U (Suc i)" by (fact U_hierarchy[OF lt_Suc])
declare U_hierarchy' [intro!]
text \<open>
Using method @{method rule} with @{thm U_cumulative} and @{thm U_cumulative'} is unsafe: if applied blindly it will very easily lead to non-termination.
Instead use @{method elim}, or instantiate the rules suitably.
@{thm U_cumulative'} is an alternative rule used by the method @{theory_text cumulativity} in @{file HoTT_Methods.thy}.
@{thm U_hierarchy'} is declared with safe @{attribute intro} to be used by the method @{theory_text derive} to handle the universe hierarchy.
Note that @{thm U_hierarchy} is unsafe.
\<close>
section \<open>Notation\<close>
abbreviation (input) constraint :: "[t \<Rightarrow> t, t, t] \<Rightarrow> prop" ("(1_:/ _ \<leadsto> _)")
where "f: A \<leadsto> B \<equiv> (\<And>x. x: A \<Longrightarrow> f x: B)"
text \<open>We use the notation @{prop "B: A \<leadsto> U i"} to abbreviate type families.\<close>
abbreviation (input) K_combinator :: "'a \<Rightarrow> 'b \<Rightarrow> 'a" ("&_" [0] 3)
where "&A \<equiv> \<lambda>_. A"
abbreviation (input) Id :: "t \<Rightarrow> t" where "Id \<equiv> \<lambda>x. x"
\<comment> \<open>NOTE: removing the input attribute causes term evaluations and even theorem attribute declarations to loop! Possible bug?\<close>
section \<open>Named theorems\<close>
named_theorems form
named_theorems comp
named_theorems cong
text \<open>
The named theorems above will be used by proof methods defined in @{file HoTT_Methods.thy}.
@{attribute form} declares type formation rules.
These are mainly used by the \<open>cumulativity\<close> method, which lifts types into higher universes.
@{attribute comp} declares computation rules, which are used by the \<open>compute\<close> method, and may also be passed to invocations of the method \<open>subst\<close> to perform equational rewriting.
@{attribute cong} declares congruence rules, the definitional equality rules of the type theory.
\<close>
(* Todo: Set up the Simplifier! *)
end
|