aboutsummaryrefslogtreecommitdiff
path: root/Equivalence.thy
blob: 07ef0df159b4f10b98747881917f2c0dfdc1ecdd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
(********
Isabelle/HoTT: Quasi-inverse and equivalence
Mar 2019

********)

theory Equivalence
imports Type_Families

begin

section \<open>Homotopy\<close>

definition homotopy :: "[t, t \<Rightarrow> t, t, t] \<Rightarrow> t"  ("(2homotopy[_, _] _ _)" [0, 0, 1000, 1000])
where "homotopy[A, B] f g \<equiv> \<Prod>x: A. f`x =[B x] g`x"

declare homotopy_def [comp]

syntax "_homotopy" :: "[t, idt, t, t, t] \<Rightarrow> t"  ("(1_ ~[_: _. _]/ _)" [101, 0, 0, 0, 101] 100)
translations "f ~[x: A. B] g" \<rightleftharpoons> "(CONST homotopy) A (\<lambda>x. B) f g"

lemma homotopy_type:
  assumes [intro]: "A: U i" "B: A \<leadsto> U i" "f: \<Prod>x: A. B x" "g: \<Prod>x: A. B x"
  shows "f ~[x: A. B x] g: U i"
by derive

declare homotopy_type [intro]

text \<open>Homotopy inverse and composition (symmetry and transitivity):\<close>

definition hominv :: "[t, t \<Rightarrow> t, t, t] \<Rightarrow> t"  ("(2hominv[_, _, _, _])")
where "hominv[A, B, f, g] \<equiv> \<lambda>H: f ~[x: A. B x] g. \<lambda>x: A. inv[B x, f`x, g`x]`(H`x)"

lemma hominv_type:
  assumes [intro]: "A: U i" "B: A \<leadsto> U i" "f: \<Prod>x: A. B x" "g: \<Prod>x: A. B x"
  shows "hominv[A, B, f, g]: f ~[x: A. B x] g \<rightarrow> g ~[x: A. B x] f"
unfolding hominv_def by (derive, fold homotopy_def)+ derive

definition homcomp :: "[t, t \<Rightarrow> t, t, t, t] \<Rightarrow> t"  ("(2homcomp[_, _, _, _, _])") where
  "homcomp[A, B, f, g, h] \<equiv> \<lambda>H: f ~[x: A. B x] g. \<lambda>H': g ~[x: A. B x] h.
    \<lambda>x: A. pathcomp[B x, f`x, g`x, h`x]`(H`x)`(H'`x)"

lemma homcomp_type:
  assumes [intro]:
    "A: U i" "B: A \<leadsto> U i"
    "f: \<Prod>x: A. B x" "g: \<Prod>x: A. B x" "h: \<Prod>x: A. B x"
  shows "homcomp[A, B, f, g, h]: f ~[x: A. B x] g \<rightarrow> g ~[x: A. B x] h \<rightarrow> f ~[x: A. B x] h"
unfolding homcomp_def by (derive, fold homotopy_def)+ derive

schematic_goal fun_eq_imp_homotopy:
  assumes [intro]:
    "p: f =[\<Prod>x: A. B x] g"
    "f: \<Prod>x: A. B x" "g: \<Prod>x: A. B x"
    "A: U i" "B: A \<leadsto> U i"
  shows "?prf: f ~[x: A. B x] g"
proof (path_ind' f g p)
  show "\<And>f. f : \<Prod>(x: A). B x \<Longrightarrow> \<lambda>x: A. refl(f`x): f ~[x: A. B x] f" by derive
qed routine

definition happly :: "[t, t \<Rightarrow> t, t, t, t] \<Rightarrow> t"
where "happly A B f g p \<equiv> indEq (\<lambda>f g. & f ~[x: A. B x] g) (\<lambda>f. \<lambda>(x: A). refl(f`x)) f g p"

syntax "_happly" :: "[idt, t, t, t, t, t] \<Rightarrow> t"
  ("(2happly[_: _. _] _ _ _)" [0, 0, 0, 1000, 1000, 1000])
translations "happly[x: A. B] f g p"  \<rightleftharpoons> "(CONST happly) A (\<lambda>x. B) f g p"

corollary happly_type:
  assumes [intro]:
    "p: f =[\<Prod>x: A. B x] g"
    "f: \<Prod>x: A. B x" "g: \<Prod>x: A. B x"
    "A: U i" "B: A \<leadsto> U i"
  shows "happly[x: A. B x] f g p: f ~[x: A. B x] g"
unfolding happly_def by (derive lems: fun_eq_imp_homotopy)

text \<open>Homotopy and function composition:\<close>

schematic_goal composition_homl:
  assumes [intro]:
    "H: f ~[x: A. B] g"
    "f: A \<rightarrow> B" "g: A \<rightarrow> B" "h: B \<rightarrow> C"
    "A: U i" "B: U i" "C: U i"
  shows "?prf: h o[A] f ~[x: A. C] h o[A] g"
unfolding homotopy_def compose_def proof (rule Prod_routine, subst (0 1) comp)
  fix x assume [intro]: "x: A"
  show "ap[h, B, C, f`x, g`x]`(H`x): h`(f`x) =[C] h`(g`x)" by (routine, fold homotopy_def, fact+)
qed routine

schematic_goal composition_homr:
  assumes [intro]:
    "H: f ~[x: B. C] g"
    "h: A \<rightarrow> B" "f: B \<rightarrow> C" "g: B \<rightarrow> C"
    "A: U i" "B: U i" "C: U i"
  shows "?prf: f o[A] h ~[x: A. C] g o[A] h"
unfolding homotopy_def compose_def proof (rule Prod_routine, subst (0 1) comp)
  fix x assume [intro]: "x: A"
  show "H`(h`x): f`(h`x) =[C] g`(h`x)" by (routine, fold homotopy_def, routine)
qed routine


section \<open>Bi-invertibility\<close>

definition biinv :: "[t, t, t] \<Rightarrow> t"  ("(2biinv[_, _]/ _)")
where "biinv[A, B] f \<equiv>
  (\<Sum>g: B \<rightarrow> A. g o[A] f ~[x:A. A] id A) \<times> (\<Sum>g: B \<rightarrow> A. f o[B] g ~[x: B. B] id B)"

text \<open>
The meanings of the syntax defined above are:
\<^item> @{term "f ~[x: A. B x] g"} expresses that @{term f} and @{term g} are homotopy functions of type @{term "\<Prod>x:A. B x"}.
\<^item> @{term "biinv[A, B] f"} expresses that the function @{term f} of type @{term "A \<rightarrow> B"} is bi-invertible.
\<close>

lemma biinv_type:
  assumes [intro]: "A: U i" "B: U i" "f: A \<rightarrow> B"
  shows "biinv[A, B] f: U i"
unfolding biinv_def by derive

declare biinv_type [intro]

schematic_goal id_is_biinv:
  assumes [intro]: "A: U i"
  shows "?prf: biinv[A, A] (id A)"
unfolding biinv_def proof (rule Sum_routine)
  show "<id A, \<lambda>x: A. refl x>: \<Sum>(g: A \<rightarrow> A). (g o[A] id A) ~[x: A. A] (id A)" by derive
  show "<id A, \<lambda>x: A. refl x>: \<Sum>(g: A \<rightarrow> A). (id A o[A] g) ~[x: A. A] (id A)" by derive
qed derive

definition equivalence :: "[t, t] \<Rightarrow> t"  (infix "\<cong>" 100)
where "A \<cong> B \<equiv> \<Sum>f: A \<rightarrow> B. biinv[A, B] f"

schematic_goal equivalence_symmetric:
  assumes [intro]: "A: U i"
  shows "?prf: A \<cong> A"
unfolding equivalence_def proof (rule Sum_routine)
  show "\<And>f. f : A \<rightarrow> A \<Longrightarrow> biinv[A, A] f : U i" unfolding biinv_def by derive
  show "id A: A \<rightarrow> A" by routine
qed (routine add: id_is_biinv)


section \<open>Quasi-inverse\<close>

definition qinv :: "[t, t, t] \<Rightarrow> t"  ("(2qinv[_, _]/ _)")
where "qinv[A, B] f \<equiv> \<Sum>g: B \<rightarrow> A. (g o[A] f ~[x: A. A] id A) \<times> (f o[B] g ~[x: B. B] id B)"

schematic_goal biinv_imp_qinv:
  assumes [intro]: "A: U i" "B: U i" "f: A \<rightarrow> B"
  shows "?prf: (biinv[A, B] f) \<rightarrow> (qinv[A,B] f)"
proof (rule Prod_routine)

assume [intro]: "b: biinv[A, B] f"

text \<open>Components of the witness of biinvertibility of @{term f}:\<close>

let ?fst_of_b =
  "fst[\<Sum>g: B \<rightarrow> A. g o[A] f ~[x: A. A] id A, &\<Sum>g: B \<rightarrow> A. f o[B] g ~[x: B. B] id B]"
and ?snd_of_b =
  "snd[\<Sum>g: B \<rightarrow> A. g o[A] f ~[x: A. A] id A, &\<Sum>g: B \<rightarrow> A. f o[B] g ~[x: B. B] id B]"

define g H g' H' where 
  "g \<equiv> fst[B \<rightarrow> A, \<lambda>g. g o[A] f ~[x: A. A] id A] ` (?fst_of_b ` b)" and
  "H \<equiv> snd[B \<rightarrow> A, \<lambda>g. g o[A] f ~[x: A. A] id A] ` (?fst_of_b ` b)" and
  "g' \<equiv> fst[B \<rightarrow> A, \<lambda>g. f o[B] g ~[x: B. B] id B] ` (?snd_of_b ` b)" and
  "H' \<equiv> snd[B \<rightarrow> A, \<lambda>g. f o[B] g ~[x: B. B] id B] ` (?snd_of_b ` b)"

have "H: g o[A] f ~[x: A. A] id A"
unfolding H_def g_def proof standard+
  have
    "fst[\<Sum>(g: B \<rightarrow> A). g o[A] f ~[x: A. A] id A, &\<Sum>(g: B \<rightarrow> A). f o[B] g ~[x: B. B] id B] :
      (biinv[A, B] f) \<rightarrow> (\<Sum>(g: B \<rightarrow> A). g o[A] f ~[g: A. A] id A)" unfolding biinv_def by derive
  thus
    "fst[\<Sum>(g: B \<rightarrow> A). g o[A] f ~[x: A. A] id A, &\<Sum>(g: B \<rightarrow> A). f o[B] g ~[x: B. B] id B]`b :
      \<Sum>(g: B \<rightarrow> A). g o[A] f ~[g: A. A] id A" by derive rule
qed derive

moreover have "(id A) o[B] g' \<equiv> g'" proof derive
  show "g': B \<rightarrow> A" unfolding g'_def proof
    have
      "snd[\<Sum>(g: B \<rightarrow> A). g o[A] f ~[x: A. A] id A, &\<Sum>(g: B \<rightarrow> A). f o[B] g ~[x: B. B] id B] :
        (biinv[A, B] f) \<rightarrow> (\<Sum>(g: B \<rightarrow> A). f o[B] g ~[x: B. B] id B)" unfolding biinv_def by derive
    thus
      "snd[\<Sum>(g: B \<rightarrow> A). g o[A] f ~[x: A. A] id A, &\<Sum>(g: B \<rightarrow> A). f o[B] g ~[x: B. B] id B]`b :
        \<Sum>(g: B \<rightarrow> A). f o[B] g ~[x: B. B] id B" by derive rule
  qed derive
qed



section \<open>Transport, homotopy, and bi-invertibility\<close>

schematic_goal transport_invl_hom:
  assumes [intro]:
    "P: A \<leadsto> U j" "A: U i"
    "x: A" "y: A" "p: x =[A] y"
  shows "?prf:
    (transport[A, P, y, x]`(inv[A, x, y]`p)) o[P x] (transport[A, P, x, y]`p) ~[w: P x. P x] id P x"
by (rule happly_type[OF transport_invl], derive)

schematic_goal transport_invr_hom:
  assumes [intro]:
    "A: U i" "P: A \<leadsto> U j" 
    "y: A" "x: A" "p: x =[A] y"
  shows "?prf:
    (transport[A, P, x, y]`p) o[P y] (transport[A, P, y, x]`(inv[A, x, y]`p)) ~[w: P y. P y] id P y"
by (rule happly_type[OF transport_invr], derive)

declare
  transport_invl_hom [intro]
  transport_invr_hom [intro]

text \<open>
The following result states that the transport of an equality @{term p} is bi-invertible, with inverse given by the transport of the inverse @{text "~p"}.
\<close>

schematic_goal transport_biinv:
  assumes [intro]: "p: A =[U i] B" "A: U i" "B: U i"
  shows "?prf: biinv[A, B] (transport[U i, Id, A, B]`p)"
unfolding biinv_def
apply (rule Sum_routine)
prefer 2
  apply (rule Sum_routine)
  prefer 3 apply (rule transport_invl_hom)
prefer 9
  apply (rule Sum_routine)
  prefer 3 apply (rule transport_invr_hom)
\<comment> \<open>The remaining subgoals are now handled easily\<close>
by derive


end