1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
|
(********
Isabelle/HoTT: Equality
Feb 2019
Intensional equality, path induction, and proofs of various results.
********)
theory Eq
imports Prod HoTT_Methods
begin
section \<open>Type definitions\<close>
axiomatization
Eq :: "[t, t, t] \<Rightarrow> t" and
refl :: "t \<Rightarrow> t" and
indEq :: "[[t, t, t] \<Rightarrow> t, t \<Rightarrow> t, t, t, t] \<Rightarrow> t"
syntax
"_Eq" :: "[t, t, t] \<Rightarrow> t" ("(2_ =[_]/ _)" [101, 0, 101] 100)
translations
"a =[A] b" \<rightleftharpoons> "(CONST Eq) A a b"
axiomatization where
Eq_form: "\<lbrakk>A: U i; a: A; b: A\<rbrakk> \<Longrightarrow> a =[A] b: U i" and
Eq_intro: "a: A \<Longrightarrow> (refl a): a =[A] a" and
Eq_elim: "\<lbrakk>
p: a =[A] b;
a: A;
b: A;
\<And>x. x: A \<Longrightarrow> f x: C x x (refl x);
\<And>x y. \<lbrakk>x: A; y: A\<rbrakk> \<Longrightarrow> C x y: x =[A] y \<leadsto> U i \<rbrakk> \<Longrightarrow> indEq C f a b p: C a b p" and
Eq_comp: "\<lbrakk>
a: A;
\<And>x. x: A \<Longrightarrow> f x: C x x (refl x);
\<And>x y. \<lbrakk>x: A; y: A\<rbrakk> \<Longrightarrow> C x y: x =[A] y \<leadsto> U i \<rbrakk> \<Longrightarrow> indEq C f a a (refl a) \<equiv> f a"
lemmas Eq_form [form]
lemmas Eq_routine [intro] = Eq_form Eq_intro Eq_elim
lemmas Eq_comp [comp]
section \<open>Path induction\<close>
text \<open>We set up rudimentary automation of path induction:\<close>
method path_ind for C :: "[t, t, t] \<Rightarrow> t" =
(rule Eq_elim[where ?C=C]; (assumption | fact)?)
method path_ind' for a b p :: t =
(rule Eq_elim[where ?a=a and ?b=b and ?p=p]; (assumption | fact)?)
syntax "_induct_over" :: "[idt, idt, idt, t] \<Rightarrow> [t, t, t] \<Rightarrow> t" ("(2{_, _, _}/ _)" 0)
translations "{x, y, p} C" \<rightharpoonup> "\<lambda>x y p. C"
text \<open>
Use "@{method path_ind} @{term "{x, y, p} C x y p"}" to perform path induction for the given type family over the variables @{term x}, @{term y}, and @{term p},
and "@{method path_ind'} @{term a} @{term b} @{term p}" to let Isabelle try and infer the shape of the type family itself (this doesn't always work!).
Note that @{term "{x, y, p} C x y p"} is just syntactic sugar for @{term "\<lambda>x y p. C x y p"}.
\<close>
section \<open>Properties of equality\<close>
subsection \<open>Symmetry (path inverse)\<close>
definition inv :: "[t, t, t, t] \<Rightarrow> t"
where "inv A x y p \<equiv> indEq (\<lambda>x y. &(y =[A] x)) (\<lambda>x. refl x) x y p"
syntax "_inv" :: "[t, t, t, t] \<Rightarrow> t" ("(2inv[_, _, _] _)" [0, 0, 0, 1000] 999)
translations "inv[A, x, y] p" \<rightleftharpoons> "(CONST inv) A x y p"
syntax "_inv'" :: "t \<Rightarrow> t" ("~_" [1000])
text \<open>Pretty-printing switch for path inverse:\<close>
ML \<open>val pretty_inv = Attrib.setup_config_bool @{binding "pretty_inv"} (K true)\<close>
print_translation \<open>
let fun inv_tr' ctxt [A, x, y, p] =
if Config.get ctxt pretty_inv
then Syntax.const @{syntax_const "_inv'"} $ p
else Syntax.const @{syntax_const "_inv"} $ A $ x $ y $ p
in
[(@{const_syntax inv}, inv_tr')]
end
\<close>
lemma inv_type: "\<lbrakk>A: U i; x: A; y: A; p: x =[A] y\<rbrakk> \<Longrightarrow> inv[A, x, y] p: y =[A] x"
unfolding inv_def by derive
lemma inv_comp: "\<lbrakk>A: U i; a: A\<rbrakk> \<Longrightarrow> inv[A, a, a] (refl a) \<equiv> refl a"
unfolding inv_def by derive
declare
inv_type [intro]
inv_comp [comp]
subsection \<open>Transitivity (path composition)\<close>
schematic_goal transitivity:
assumes "A: U i" "x: A" "y: A" "p: x =[A] y"
shows "?p: \<Prod>z: A. y =[A] z \<rightarrow> x =[A] z"
by
(path_ind' x y p, quantify_all,
path_ind "{x, z, _} x =[A] z",
rule Eq_intro, routine add: assms)
definition pathcomp :: "[t, t, t, t, t, t] \<Rightarrow> t"
where
"pathcomp A x y z p q \<equiv> (indEq
(\<lambda>x y. & \<Prod>z: A. y =[A] z \<rightarrow> x =[A] z)
(\<lambda>x. \<lambda>z: A. \<lambda>q: x =[A] z. indEq (\<lambda>x z. & x =[A] z) (\<lambda>x. refl x) x z q)
x y p)`z`q"
syntax "_pathcomp" :: "[t, t, t, t, t, t] \<Rightarrow> t"
("(2pathcomp[_, _, _, _] _ _)" [0, 0, 0, 0, 1000, 1000] 999)
translations "pathcomp[A, x, y, z] p q" \<rightleftharpoons> "(CONST pathcomp) A x y z p q"
syntax "_pathcomp'" :: "[t, t] \<Rightarrow> t" (infixl "^" 110)
ML \<open>val pretty_pathcomp = Attrib.setup_config_bool @{binding "pretty_pathcomp"} (K true)\<close>
\<comment> \<open>Pretty-printing switch for path composition\<close>
print_translation \<open>
let fun pathcomp_tr' ctxt [A, x, y, z, p, q] =
if Config.get ctxt pretty_pathcomp
then Syntax.const @{syntax_const "_pathcomp'"} $ p $ q
else Syntax.const @{syntax_const "_pathcomp"} $ A $ x $ y $ z $ p $ q
in
[(@{const_syntax pathcomp}, pathcomp_tr')]
end
\<close>
corollary pathcomp_type:
assumes [intro]: "A: U i" "x: A" "y: A" "z: A" "p: x =[A] y" "q: y =[A] z"
shows "pathcomp[A, x, y, z] p q: x =[A] z"
unfolding pathcomp_def by (derive lems: transitivity)
corollary pathcomp_comp:
assumes [intro]: "A: U i" "a: A"
shows "pathcomp[A, a, a, a] (refl a) (refl a) \<equiv> refl a"
unfolding pathcomp_def by (derive lems: transitivity)
declare
pathcomp_type [intro]
pathcomp_comp [comp]
section \<open>Higher groupoid structure of types\<close>
schematic_goal pathcomp_idr:
assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y"
shows "?prf: pathcomp[A, x, y, y] p (refl y) =[x =[A] y] p"
proof (path_ind' x y p)
show "\<And>x. x: A \<Longrightarrow> refl(refl x): pathcomp[A, x, x, x] (refl x) (refl x) =[x =[A] x] (refl x)"
by derive
qed routine
schematic_goal pathcomp_idl:
assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y"
shows "?prf: pathcomp[A, x, x, y] (refl x) p =[x =[A] y] p"
proof (path_ind' x y p)
show "\<And>x. x: A \<Longrightarrow> refl(refl x): pathcomp[A, x, x, x] (refl x) (refl x) =[x =[A] x] (refl x)"
by derive
qed routine
schematic_goal pathcomp_invr:
assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y"
shows "?prf: pathcomp[A, x, y, x] p (inv[A, x, y] p) =[x =[A] x] (refl x)"
proof (path_ind' x y p)
show
"\<And>x. x: A \<Longrightarrow> refl(refl x):
pathcomp[A, x, x, x] (refl x) (inv[A, x, x] (refl x)) =[x =[A] x] (refl x)"
by derive
qed routine
schematic_goal pathcomp_invl:
assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y"
shows "?prf: pathcomp[A, y, x, y] (inv[A, x, y] p) p =[y =[A] y] refl(y)"
proof (path_ind' x y p)
show
"\<And>x. x: A \<Longrightarrow> refl(refl x):
pathcomp[A, x, x, x] (inv[A, x, x] (refl x)) (refl x) =[x =[A] x] (refl x)"
by derive
qed routine
schematic_goal inv_involutive:
assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y"
shows "?prf: inv[A, y, x] (inv[A, x, y] p) =[x =[A] y] p"
proof (path_ind' x y p)
show "\<And>x. x: A \<Longrightarrow> refl(refl x): inv A x x (inv A x x (refl x)) =[x =[A] x] (refl x)"
by derive
qed routine
text \<open>
We use the proof of associativity of path composition to demonstrate the process of deriving proof terms.
The proof involves a triply-nested path induction, which is cumbersome to write in a structured style, especially if one does not know the correct form of the proof term in the first place.
However, using proof scripts the derivation becomes quite easy: we simply give the correct form of the statements to induct over, and prove the simple subgoals returned by the prover.
The proof is sensitive to the order of the quantifiers in the product.
In particular, changing the order causes unification to fail in the path inductions.
It seems to be good practice to order the variables in the order over which we will path-induct.
\<close>
schematic_goal pathcomp_assoc:
assumes [intro]: "A: U i"
shows
"?prf: \<Prod>x: A. \<Prod>y: A. \<Prod>p: x =[A] y. \<Prod>z: A. \<Prod>q: y =[A] z. \<Prod>w: A. \<Prod>r: z =[A] w.
pathcomp[A, x, y, w] p (pathcomp[A, y, z, w] q r) =[x =[A] w]
pathcomp[A, x, z, w] (pathcomp[A, x, y, z] p q) r"
apply (quantify 3)
apply (path_ind "{x, y, p}
\<Prod>(z: A). \<Prod>(q: y =[A] z). \<Prod>(w: A). \<Prod>(r: z =[A] w).
pathcomp[A, x, y, w] p (pathcomp[A, y, z, w] q r) =[x =[A] w]
pathcomp[A, x, z, w] (pathcomp[A, x, y, z] p q) r")
apply (quantify 2)
apply (path_ind "{x, z, q}
\<Prod>(w: A). \<Prod>(r: z =[A] w).
pathcomp[A, x, x, w] (refl x) (pathcomp[A, x, z, w] q r) =[x =[A] w]
pathcomp[A, x, z, w] (pathcomp[A, x, x, z] (refl x) q) r")
apply (quantify 2)
apply (path_ind "{x, w, r}
pathcomp[A, x, x, w] (refl x) (pathcomp[A, x, x, w] (refl x) r) =[x =[A] w]
pathcomp[A, x, x, w] (pathcomp[A, x, x, x] (refl x) (refl x)) r")
text \<open>The rest is now routine.\<close>
proof -
show
"\<And>x. x: A \<Longrightarrow> refl(refl x):
pathcomp[A, x, x, x] (refl x) (pathcomp[A, x, x, x] (refl x) (refl x)) =[x =[A] x]
pathcomp[A, x, x, x] (pathcomp[A, x, x, x] (refl x) (refl x)) (refl x)"
by derive
qed routine
(* Todo, if possible:
Implement a custom version of schematic_goal/theorem that exports the derived proof term.
*)
section \<open>Functoriality of functions on types under equality\<close>
schematic_goal transfer:
assumes [intro]:
"A: U i" "B: U i" "f: A \<rightarrow> B"
"x: A" "y: A" "p: x =[A] y"
shows "?prf: f`x =[B] f`y"
by (path_ind' x y p, rule Eq_routine, routine)
definition ap :: "[t, t, t, t, t] \<Rightarrow> t"
where "ap B f x y p \<equiv> indEq ({x, y, _} f`x =[B] f`y) (\<lambda>x. refl (f`x)) x y p"
syntax "_ap" :: "[t, t, t, t, t] \<Rightarrow> t" ("(2ap[_, _, _] _ _)" [0, 0, 0, 1000, 1000])
translations "ap[B, x, y] f p" \<rightleftharpoons> "(CONST ap) B f x y p"
syntax "_ap'" :: "[t, t] \<Rightarrow> t" ("(_{_})" [1000, 0] 1000)
ML \<open>val pretty_ap = Attrib.setup_config_bool @{binding "pretty_ap"} (K true)\<close>
print_translation \<open>
let fun ap_tr' ctxt [B, f, x, y, p] =
if Config.get ctxt pretty_ap
then Syntax.const @{syntax_const "_ap'"} $ f $ p
else Syntax.const @{syntax_const "_ap"} $ B $ x $ y $ f $ p
in
[(@{const_syntax ap}, ap_tr')]
end
\<close>
corollary ap_type:
assumes
"A: U i" "B: U i" "f: A \<rightarrow> B"
"x: A" "y: A" "p: x =[A] y"
shows "ap[B, x, y] f p: f`x =[B] f`y"
unfolding ap_def using assms by (rule transfer)
lemma ap_comp:
assumes [intro]: "A: U i" "B: U i" "f: A \<rightarrow> B" "x: A"
shows "ap[B, x, x] f (refl x) \<equiv> refl (f`x)"
unfolding ap_def by derive
declare
ap_type [intro]
ap_comp [comp]
schematic_goal ap_func_pathcomp:
assumes [intro]: "A: U i" "B: U i" "f: A \<rightarrow> B"
shows
"?prf: \<Prod>x: A. \<Prod>y: A. \<Prod>p: x =[A] y. \<Prod>z: A. \<Prod>q: y =[A] z.
ap[B, x, z] f (pathcomp[A, x, y, z] p q) =[f`x =[B] f`z]
pathcomp[B, f`x, f`y, f`z] (ap[B, x, y] f p) (ap[B, y, z] f q)"
apply (quantify 3)
apply (path_ind "{x, y, p}
\<Prod>z: A. \<Prod>q: y =[A] z.
ap[B, x, z] f (pathcomp[A, x, y, z] p q) =[f`x =[B] f`z]
pathcomp[B, f`x, f`y, f`z] (ap[B, x, y] f p) (ap[B, y, z] f q)")
apply (quantify 2)
apply (path_ind "{x, z, q}
ap[B, x, z] f (pathcomp[A, x, x, z] (refl x) q) =[f`x =[B] f`z]
pathcomp[B, f`x, f`x, f`z] (ap[B, x, x] f (refl x)) (ap[B, x, z] f q)")
proof -
show
"\<And>x. x: A \<Longrightarrow> refl(refl(f`x)) :
ap[B, x, x] f (pathcomp[A, x, x, x] (refl x) (refl x)) =[f`x =[B] f`x]
pathcomp[B, f`x, f`x, f`x] (ap[B, x, x] f (refl x)) (ap[B, x, x] f (refl x))"
by derive
qed routine
schematic_goal ap_func_compose:
assumes [intro]:
"A: U i" "B: U i" "C: U i"
"f: A \<rightarrow> B" "g: B \<rightarrow> C"
shows
"?prf: \<Prod>x: A. \<Prod>y: A. \<Prod>p: x =[A] y.
ap[C, f`x, f`y] g (ap[B, x, y] f p) =[g`(f`x) =[C] g`(f`y)]
ap[C, x, y] (g o[A] f) p"
apply (quantify 3)
apply (path_ind "{x, y, p}
ap[C, f`x, f`y] g (ap[B, x, y] f p) =[g`(f`x) =[C] g`(f`y)]
ap[C, x, y] (g o[A] f) p")
proof -
show "\<And>x. x: A \<Longrightarrow> refl(refl (g`(f`x))) :
ap[C, f`x, f`x] g (ap[B, x, x] f (refl x)) =[g`(f`x) =[C] g`(f`x)]
ap[C, x, x] (g o[A] f) (refl x)"
unfolding compose_def by derive
fix x y p assume [intro]: "x: A" "y: A" "p: x =[A] y"
show "ap[C, f`x, f`y] g (ap[B, x, y] f p) =[g`(f`x) =[C] g`(f`y)] ap[C, x, y] (g o[A] f) p: U i"
proof
have
"ap[C, x, y] (g o[A] f) p: (\<lambda>x: A. g`(f`x))`x =[C] (\<lambda>x: A. g`(f`x))`y"
unfolding compose_def by derive
moreover have
"(\<lambda>x: A. g`(f`x))`x =[C] (\<lambda>x: A. g`(f`x))`y \<equiv> g`(f`x) =[C] g`(f`y)" by derive
ultimately show
"ap[C, x, y] (g o[A] f) p: g`(f`x) =[C] g`(f`y)" by simp
qed derive
qed routine
declare[[pretty_inv=false, pretty_ap=false]]
schematic_goal ap_func_inv:
assumes [intro]:
"A: U i" "B: U i" "f: A \<rightarrow> B"
"x: A" "y: A" "p: x =[A] y"
shows "?prf: ap[B, y, x] f (inv[A, x, y] p) =[f`y =[B] f`x] inv[B, f`x, f`y] (ap[B, x, y] f p)"
proof (path_ind' x y p)
show "\<And>x. x: A \<Longrightarrow> refl(refl(f`x)):
ap[B, x, x] f (inv[A, x, x] (refl x)) =[f`x =[B] f`x] inv[B, f`x, f`x] (ap[B, x, x] f (refl x))"
by derive
qed routine
schematic_goal ap_func_id:
assumes [intro]: "A: U i" "x: A" "y: A" "p: x =[A] y"
shows "?prf: ap A (id A) x y p =[x =[A] y] p"
proof (path_ind' x y p)
fix x assume [intro]: "x: A"
show "refl(refl x): ap[A, x, x] (id A) (refl x) =[x =[A] x] refl x" by derive
fix y p assume [intro]: "y: A" "p: x =[A] y"
have "ap[A, x, y] (id A) p: (id A)`x =[A] (id A)`y" by derive
moreover have "(id A)`x =[A] (id A)`y \<equiv> x =[A] y" by derive
ultimately have [intro]: "ap[A, x, y] (id A) p: x =[A] y" by simp
show "ap[A, x, y] (id A) p =[x =[A] y] p: U i" by derive
qed
section \<open>Transport\<close>
schematic_goal transport:
assumes [intro]:
"P: A \<rightarrow> U j" "A: U i"
"x: A" "y: A" "p: x =[A] y"
shows "?prf: P`x \<rightarrow> P`y"
proof (path_ind' x y p)
show "\<And>x. x: A \<Longrightarrow> id P`x: P`x \<rightarrow> P`x" by derive
qed routine
definition transport :: "[t, t, t, t] \<Rightarrow> t" ("(2transport[_, _, _] _)" [0, 0, 0, 1000])
where "transport[P, x, y] p \<equiv> indEq (\<lambda>a b. & (P`a \<rightarrow> P`b)) (\<lambda>x. id P`x) x y p"
syntax "_transport'" :: "[t, t] \<Rightarrow> t" ("(2_*)" [1000])
ML \<open>val pretty_transport = Attrib.setup_config_bool @{binding "pretty_transport"} (K true)\<close>
print_translation \<open>
let fun transport_tr' ctxt [P, x, y, p] =
if Config.get ctxt pretty_transport
then Syntax.const @{syntax_const "_transport'"} $ p
else @{const transport} $ P $ x $ y $ p
in
[(@{const_syntax transport}, transport_tr')]
end
\<close>
corollary transport_type:
assumes "P: A \<rightarrow> U j" "A: U i" "x: A" "y: A" "p: x =[A] y"
shows "transport[P, x, y] p: P`x \<rightarrow> P`y"
unfolding transport_def using assms by (rule transport)
lemma transport_comp:
assumes [intro]: "A: U i" "P: A \<rightarrow> U j" "a: A"
shows "transport P a a (refl a) \<equiv> id P`a"
unfolding transport_def by derive
declare
transport_type [intro]
transport_comp [comp]
schematic_goal transport_invl:
assumes [intro]:
"A: U i" "P: A \<rightarrow> U j"
"x: A" "y: A" "p: x =[A] y"
shows "?prf:
(transport[P, y, x] (inv[A, x, y] p)) o[P`x] (transport[P, x, y] p) =[P`x \<rightarrow> P`x] id P`x"
proof (path_ind' x y p)
fix x assume [intro]: "x: A"
show
"refl (id P`x) :
transport[P, x, x] (inv[A, x, x] (refl x)) o[P`x] (transport[P, x, x] (refl x)) =[P`x \<rightarrow> P`x]
id P`x"
by derive
fix y p assume [intro]: "y: A" "p: x =[A] y"
have [intro]:
"transport[P, y, x] (inv[A, x, y] p) o[P`x] transport[P, x, y] p : P`x \<rightarrow> P`x"
proof show "transport[P, x, y] p: P`x \<rightarrow> P`y" by routine qed routine
show
"transport[P, y, x] (inv[A, x, y] p) o[P`x] transport[P, x, y] p =[P`x \<rightarrow> P`x] id P`x: U j"
by derive
qed
schematic_goal transport_invr:
assumes [intro]:
"A: U i" "P: A \<rightarrow> U j"
"x: A" "y: A" "p: x =[A] y"
shows "?prf:
(transport[P, x, y] p) o[P`y] (transport[P, y, x] (inv[A, x, y] p)) =[P`y \<rightarrow> P`y] id P`y"
proof (path_ind' x y p)
fix x assume [intro]: "x: A"
show
"refl (id P`x) :
(transport[P, x, x] (refl x)) o[P`x] transport[P, x, x] (inv[A, x, x] (refl x)) =[P`x \<rightarrow> P`x]
id P`x"
by derive
fix y p assume [intro]: "y: A" "p: x =[A] y"
have [intro]:
"transport[P, x, y] p o[P`y] transport[P, y, x] (inv[A, x, y] p): P`y \<rightarrow> P`y"
proof show "transport[P, x, y] p: P`x \<rightarrow> P`y" by routine qed routine
show
"transport[P, x, y] p o[P`y] transport[P, y, x] (inv[A, x, y] p) =[P`y \<rightarrow> P`y] id P`y: U j"
by derive
qed
declare
transport_invl [intro]
transport_invr [intro]
end
|