aboutsummaryrefslogtreecommitdiff
path: root/Eq.thy
blob: d8e31534b1677a34ec7dbaa51460395c6357be09 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
(********
Isabelle/HoTT: Equality
Feb 2019

********)

theory Eq
imports Prod HoTT_Methods

begin


section \<open>Type definitions\<close>

axiomatization
  Eq    :: "[t, t, t] \<Rightarrow> t" and
  refl  :: "t \<Rightarrow> t" and
  indEq :: "[[t, t, t] \<Rightarrow> t, t \<Rightarrow> t, t, t, t] \<Rightarrow> t"

syntax
  "_Eq" :: "[t, t, t] \<Rightarrow> t"  ("(2_ =[_]/ _)" [101, 0, 101] 100)
translations
  "a =[A] b" \<rightleftharpoons> "(CONST Eq) A a b"

axiomatization where
  Eq_form: "\<lbrakk>A: U i; a: A; b: A\<rbrakk> \<Longrightarrow> a =[A] b: U i" and

  Eq_intro: "a: A \<Longrightarrow> (refl a): a =[A] a" and

  Eq_elim: "\<lbrakk>
    p: a =[A] b;
    a: A;
    b: A;
    \<And>x. x: A \<Longrightarrow> f x: C x x (refl x);
    \<And>x y. \<lbrakk>x: A; y: A\<rbrakk> \<Longrightarrow> C x y: x =[A] y \<leadsto> U i \<rbrakk> \<Longrightarrow> indEq C f a b p: C a b p" and

  Eq_comp: "\<lbrakk>
    a: A;
    \<And>x. x: A \<Longrightarrow> f x: C x x (refl x);
    \<And>x y. \<lbrakk>x: A; y: A\<rbrakk> \<Longrightarrow> C x y: x =[A] y \<leadsto> U i \<rbrakk> \<Longrightarrow> indEq C f a a (refl a) \<equiv> f a"

lemmas Eq_form [form]
lemmas Eq_routine [intro] = Eq_form Eq_intro Eq_elim
lemmas Eq_comp [comp]


section \<open>Path induction\<close>

text \<open>We set up rudimentary automation of path induction:\<close>

method path_ind for C :: "[t, t, t] \<Rightarrow> t" =
  (rule Eq_elim[where ?C=C]; (assumption | fact)?)

method path_ind' for a b p :: t =
  (rule Eq_elim[where ?a=a and ?b=b and ?p=p]; (assumption | fact)?)

syntax "_induct_over" :: "[idt, idt, idt, t] \<Rightarrow> [t, t, t] \<Rightarrow> t"  ("(2{_, _, _}/ _)" 0)
translations "{x, y, p} C" \<rightharpoonup> "\<lambda>x y p. C"


section \<open>Properties of equality\<close>

subsection \<open>Symmetry (path inverse)\<close>

definition inv :: "[t, t, t, t] \<Rightarrow> t"
where "inv A x y p \<equiv> indEq (\<lambda>x y. ^(y =[A] x)) (\<lambda>x. refl x) x y p"

syntax "_inv" :: "t \<Rightarrow> t"  ("~_" [1000])

text \<open>Pretty-printing switch for path inverse:\<close>

ML \<open>val pretty_inv = Attrib.setup_config_bool @{binding "pretty_inv"} (K true)\<close>

print_translation \<open>
let fun inv_tr' ctxt [A, x, y, p] =
  if Config.get ctxt pretty_inv
  then Syntax.const @{syntax_const "_inv"} $ p
  else @{const inv} $ A $ x $ y $ p
in
  [(@{const_syntax inv}, inv_tr')]
end
\<close>

lemma inv_type: "\<lbrakk>A: U i; x: A; y: A; p: x =[A] y\<rbrakk> \<Longrightarrow> inv A x y p: y =[A] x"
unfolding inv_def by derive

lemma inv_comp: "\<lbrakk>A: U i; a: A\<rbrakk> \<Longrightarrow> inv A a a (refl a) \<equiv> refl a"
unfolding inv_def by derive

declare
  inv_type [intro]
  inv_comp [comp]

subsection \<open>Transitivity (path composition)\<close>

schematic_goal transitivity:
  assumes "A: U i" "x: A" "y: A" "p: x =[A] y"
  shows "?p: \<Prod>z: A. y =[A] z \<rightarrow> x =[A] z"
by
  (path_ind' x y p, quantify_all,
  path_ind "{x, z, _} x =[A] z",
  rule Eq_intro, routine add: assms)

definition pathcomp :: "[t, t, t, t, t, t] \<Rightarrow> t"
where
  "pathcomp A x y z p q \<equiv> (indEq
    (\<lambda>x y _. \<Prod>z: A. y =[A] z \<rightarrow> x =[A] z)
    (\<lambda>x. \<lambda>(z: A). \<lambda>(q: x =[A] z). indEq (\<lambda>x z _. x =[A] z) (\<lambda>x. refl x) x z q)
    x y p)`z`q"


syntax "_pathcomp" :: "[t, t] \<Rightarrow> t"  (infixl "*" 110)

text \<open>Pretty-printing switch for path composition:\<close>

ML \<open>val pretty_pathcomp = Attrib.setup_config_bool @{binding "pretty_pathcomp"} (K true)\<close>

print_translation \<open>
let fun pathcomp_tr' ctxt [A, x, y, z, p, q] =
  if Config.get ctxt pretty_pathcomp
  then Syntax.const @{syntax_const "_pathcomp"} $ p $ q
  else @{const pathcomp} $ A $ x $ y $ z $ p $ q
in
  [(@{const_syntax pathcomp}, pathcomp_tr')]
end
\<close>

lemma pathcomp_type:
  assumes "A: U i" "x: A" "y: A" "z: A" "p: x =[A] y" "q: y =[A] z"
  shows "pathcomp A x y z p q: x =[A] z"
unfolding pathcomp_def by (derive lems: transitivity assms)

lemma pathcomp_cmp:
  assumes "A: U i" and "a: A"
  shows "pathcomp A a a a (refl a) (refl a) \<equiv> refl a"
unfolding pathcomp_def by (derive lems: transitivity assms)

lemmas pathcomp_type [intro]
lemmas pathcomp_comp [comp] = pathcomp_cmp


section \<open>Higher groupoid structure of types\<close>

schematic_goal pathcomp_idr:
  assumes "A: U i" "x: A" "y: A" "p: x =[A] y"
  shows "?a: pathcomp A x y y p (refl y) =[x =[A] y] p"
proof (path_ind' x y p)
  show "\<And>x. x: A \<Longrightarrow> refl(refl x): pathcomp A x x x (refl x) (refl x) =[x =[A] x] (refl x)"
  by (derive lems: assms)
qed (routine add: assms)

schematic_goal pathcomp_idl:
  assumes "A: U i" "x: A" "y: A" "p: x =[A] y"
  shows "?a: pathcomp A x x y (refl x) p =[x =[A] y] p"
proof (path_ind' x y p)
  show "\<And>x. x: A \<Longrightarrow> refl(refl x): pathcomp A x x x (refl x) (refl x) =[x =[A] x] (refl x)"
  by (derive lems: assms)
qed (routine add: assms)

schematic_goal pathcomp_invr:
  assumes "A: U i" "x: A" "y: A" "p: x =[A] y"
  shows "?a: pathcomp A x y x p (inv A x y p) =[x =[A] x] (refl x)"
proof (path_ind' x y p)
  show
    "\<And>x. x: A \<Longrightarrow> refl(refl x):
      pathcomp A x x x (refl x) (inv A x x (refl x)) =[x =[A] x] (refl x)"
  by (derive lems: assms)
qed (routine add: assms)

schematic_goal pathcomp_invl:
  assumes "A: U i" "x: A" "y: A" "p: x =[A] y"
  shows "?a: pathcomp A y x y (inv A x y p) p =[y =[A] y] refl(y)"
proof (path_ind' x y p)
  show
    "\<And>x. x: A \<Longrightarrow> refl(refl x):
      pathcomp A x x x (inv A x x (refl x)) (refl x) =[x =[A] x] (refl x)"
  by (derive lems: assms)
qed (routine add: assms)

schematic_goal inv_involutive:
  assumes "A: U i" "x: A" "y: A" "p: x =[A] y"
  shows "?a: inv A y x (inv A x y p) =[x =[A] y] p"
proof (path_ind' x y p)
  show "\<And>x. x: A \<Longrightarrow> refl(refl x): inv A x x (inv A x x (refl x)) =[x =[A] x] (refl x)"
  by (derive lems: assms)
qed (routine add: assms)

text \<open>
We use the proof of associativity of path composition to demonstrate the process of deriving proof terms.
The proof involves a triply-nested path induction, which is cumbersome to write in a structured style, especially if one does not know the correct form of the proof term in the first place.
However, using proof scripts the derivation becomes quite easy; we simply give the correct form of the statements to induct over, and prove the simple subgoals returned by the prover.

The proof is sensitive to the order of the quantifiers in the product.
In particular, changing the order causes unification to fail in the path inductions.
It seems to be good practice to order the variables in the order over which we will path-induct.
\<close>

declare[[pretty_pathcomp=false]]
schematic_goal pathcomp_assoc:
  assumes "A: U i"
  shows 
    "?a: \<Prod>x: A. \<Prod>y: A. \<Prod>p: x =[A] y. \<Prod>z: A. \<Prod>q: y =[A] z. \<Prod>w: A. \<Prod>r: z =[A] w.
      pathcomp A x y w p (pathcomp A y z w q r) =[x =[A] w]
        pathcomp A x z w (pathcomp A x y z p q) r"

apply (quantify 3)
apply (path_ind "{x, y, p}
  \<Prod>(z: A). \<Prod>(q: y =[A] z). \<Prod>(w: A). \<Prod>(r: z =[A] w).
    pathcomp A x y w p (pathcomp A y z w q r) =[x =[A] w]
      pathcomp A x z w (pathcomp A x y z p q) r")
apply (quantify 2)
apply (path_ind "{xa, z, q}
  \<Prod>(w: A). \<Prod>(r: z =[A] w).
    pathcomp A xa xa w (refl xa) (pathcomp A xa z w q r) =[xa =[A] w]
      pathcomp A xa z w (pathcomp A xa xa z (refl xa) q) r")
apply (quantify 2)
apply (path_ind "{xb, w, r}
  pathcomp A xb xb w (refl xb) (pathcomp A xb xb w (refl xb) r) =[xb =[A] w]
    pathcomp A xb xb w (pathcomp A xb xb xb (refl xb) (refl xb)) r")

text \<open>The rest is now routine.\<close>

proof -
  show
    "\<And>x. x: A \<Longrightarrow> refl(refl x):
      pathcomp A x x x (refl x) (pathcomp A x x x (refl x) (refl x)) =[x =[A] x]
        pathcomp A x x x (pathcomp A x x x (refl x) (refl x)) (refl x)"
  by (derive lems: assms)
qed (derive lems: assms)

(* Todo, if possible:
   Implement a custom version of schematic_goal/theorem that exports the derived proof term.
*)


section \<open>Functoriality of functions on types\<close>

schematic_goal transfer:
  assumes
    "A: U i" "B: U i" "f: A \<rightarrow> B"
    "x: A" "y: A" "p: x =[A] y"
  shows "?a: f`x =[B] f`y"
by (path_ind' x y p, rule Eq_intro, routine add: assms)

definition ap :: "[t, t, t, t, t] \<Rightarrow> t"
where "ap B f x y p \<equiv> indEq ({x, y, _} f`x =[B] f`y) (\<lambda>x. refl (f`x)) x y p"

lemma ap_type:
  assumes
    "A: U i" "B: U i" "f: A \<rightarrow> B"
    "x: A" "y: A" "p: x =[A] y"
  shows "ap B f x y p: f`x =[B] f`y"
unfolding ap_def using assms by (rule transfer)

lemma ap_cmp:
  assumes "A: U i" "B: U i" "f: A \<rightarrow> B" "x: A"
  shows "ap B f x x (refl x) \<equiv> refl (f`x)"
unfolding ap_def by (derive lems: assms)

lemmas ap_type [intro]
lemmas ap_comp [comp] = ap_cmp


schematic_goal ap_func1:
  assumes "A: U i" "B: U i" "f: A \<rightarrow> B"
  shows
    "?a: \<Prod>x: A. \<Prod>y: A. \<Prod>p: x =[A] y. \<Prod>z: A. \<Prod>q: y =[A] z.
      ap B f x z (pathcomp A x y z p q) =[f`x =[B] f`z]
        pathcomp B (f`x) (f`y) (f`z) (ap B f x y p) (ap B f y z q)"

apply (quantify 3)
apply (path_ind "{x, y, p}
  \<Prod>z: A. \<Prod>q: y =[A] z.
    ap B f x z (pathcomp A x y z p q) =[f`x =[B] f`z]
      pathcomp B (f`x) (f`y) (f`z) (ap B f x y p) (ap B f y z q)")
apply (quantify 2)
apply (path_ind "{x, z, q}
  ap B f x z (pathcomp A x x z (refl x) q) =[f`x =[B] f`z]
    pathcomp B (f`x) (f`x) (f`z) (ap B f x x (refl x)) (ap B f x z q)")

proof -
  show
    "\<And>x. x: A \<Longrightarrow> refl(refl(f`x)): ap B f x x (pathcomp A x x x (refl x) (refl x)) =[f`x =[B] f`x]
      pathcomp B (f`x) (f`x) (f`x) (ap B f x x (refl x)) (ap B f x x (refl x))"
  by (derive lems: assms)
qed (derive lems: assms)

end