aboutsummaryrefslogtreecommitdiff
path: root/tests
diff options
context:
space:
mode:
Diffstat (limited to 'tests')
-rw-r--r--tests/Subgoal.thy10
-rw-r--r--tests/Test.thy12
2 files changed, 7 insertions, 15 deletions
diff --git a/tests/Subgoal.thy b/tests/Subgoal.thy
index 4fcffad..9690013 100644
--- a/tests/Subgoal.thy
+++ b/tests/Subgoal.thy
@@ -13,21 +13,16 @@ lemma rpathcomp_type:
shows "rpathcomp: \<Prod>x:A. \<Prod>y:A. x =\<^sub>A y \<rightarrow> (\<Prod>z:A. y =\<^sub>A z \<rightarrow> x =\<^sub>A z)"
unfolding rpathcomp_def
apply standard
-prefer 2
subgoal premises 1 for x \<comment> \<open>\<open>subgoal\<close> is the proof script version of \<open>fix-assume-show\<close>.\<close>
apply standard
- prefer 2
subgoal premises 2 for y
apply standard
- prefer 2
subgoal premises 3 for p
apply (rule Equal_elim[where ?x=x and ?y=y and ?A=A])
\<comment> \<open>specifying \<open>?A=A\<close> is crucial here to prevent the next \<open>subgoal\<close> from binding a schematic ?A which should be instantiated to \<open>A\<close>.\<close>
- prefer 2
+ prefer 4
apply standard
- prefer 2
apply (rule Prod_intro)
- prefer 2
subgoal premises 4 for u z q
apply (rule Equal_elim[where ?x=u and ?y=z])
apply (simple lems: assms 4)
@@ -58,11 +53,8 @@ text "
"
apply (rule Prod_intro)
-prefer 2
apply (rule Prod_intro)
- prefer 2
apply (rule Prod_intro)
- prefer 2
subgoal 123 for x y p
apply (rule Equal_elim[where ?x=x and ?y=y and ?A=A])
oops
diff --git a/tests/Test.thy b/tests/Test.thy
index 433039c..c0dc0dd 100644
--- a/tests/Test.thy
+++ b/tests/Test.thy
@@ -6,8 +6,8 @@ This is an old "test suite" from early implementations of the theory.
It is not always guaranteed to be up to date, or reflect most recent versions of the theory.
*)
-theory HoTT_Test
- imports HoTT
+theory Test
+ imports "../HoTT"
begin
@@ -31,14 +31,14 @@ text "
Declaring \<open>Prod_intro\<close> with the \<open>intro\<close> attribute (in HoTT.thy) enables \<open>standard\<close> to prove the following.
"
-proposition assumes "A : U(i)" shows "\<^bold>\<lambda>x. x: A \<rightarrow> A" using assms ..
+proposition assumes "A : U(i)" shows "\<^bold>\<lambda>x. x: A \<rightarrow> A" by (simple lems: assms)
proposition
assumes "A : U(i)" and "A \<equiv> B"
shows "\<^bold>\<lambda>x. x : B \<rightarrow> A"
proof -
- have "A\<rightarrow>A \<equiv> B\<rightarrow>A" using assms by simp
- moreover have "\<^bold>\<lambda>x. x : A \<rightarrow> A" using assms(1) ..
+ have "A \<rightarrow> A \<equiv> B \<rightarrow> A" using assms by simp
+ moreover have "\<^bold>\<lambda>x. x : A \<rightarrow> A" by (simple lems: assms)
ultimately show "\<^bold>\<lambda>x. x : B \<rightarrow> A" by simp
qed
@@ -102,7 +102,7 @@ lemma curried_type_judgment:
text "
- Polymorphic identity function. Trivial due to lambda expression polymorphism.
+ Polymorphic identity function is now trivial due to lambda expression polymorphism.
(Was more involved in previous monomorphic incarnations.)
"