aboutsummaryrefslogtreecommitdiff
path: root/spartan
diff options
context:
space:
mode:
Diffstat (limited to 'spartan')
-rw-r--r--spartan/theories/Identity.thy2
-rw-r--r--spartan/theories/Spartan.thy12
2 files changed, 6 insertions, 8 deletions
diff --git a/spartan/theories/Identity.thy b/spartan/theories/Identity.thy
index 0edf20e..19b8b7a 100644
--- a/spartan/theories/Identity.thy
+++ b/spartan/theories/Identity.thy
@@ -261,7 +261,7 @@ Lemma transport_comp [comps]:
"A: U i"
"\<And>x. x: A \<Longrightarrow> P x: U i"
shows "trans P (refl a) \<equiv> id (P a)"
- unfolding transport_def id_def by reduce
+ unfolding transport_def by reduce
\<comment> \<open>TODO: Build transport automation!\<close>
diff --git a/spartan/theories/Spartan.thy b/spartan/theories/Spartan.thy
index ac12937..a79f209 100644
--- a/spartan/theories/Spartan.thy
+++ b/spartan/theories/Spartan.thy
@@ -242,7 +242,7 @@ setup \<open>
ctxt addSolver (mk_solver "" typechk_tac))
\<close>
-method reduce uses add = (simp add: comps add | subst comps, reduce add: add)+
+method reduce uses add = (simp add: comps add | subst comps)+
section \<open>Implicit notations\<close>
@@ -355,23 +355,21 @@ translations "g \<circ> f" \<leftharpoondown> "g \<circ>\<^bsub>A\<^esub> f"
subsection \<open>Identity function\<close>
-definition id where "id A \<equiv> \<lambda>x: A. x"
+abbreviation id where "id A \<equiv> \<lambda>x: A. x"
lemma
- idI [typechk]: "A: U i \<Longrightarrow> id A: A \<rightarrow> A" and
- id_comp [comps]: "x: A \<Longrightarrow> (id A) x \<equiv> x"
- unfolding id_def by reduce
+ id_type[typechk]: "A: U i \<Longrightarrow> id A: A \<rightarrow> A" and
+ id_comp [comps]: "x: A \<Longrightarrow> (id A) x \<equiv> x" \<comment> \<open>for the occasional manual rewrite\<close>
+ by reduce
lemma id_left [comps]:
assumes "f: A \<rightarrow> B" "A: U i" "B: U i"
shows "(id B) \<circ>\<^bsub>A\<^esub> f \<equiv> f"
- unfolding id_def
by (subst eta_exp[of f]) (reduce, rule eta)
lemma id_right [comps]:
assumes "f: A \<rightarrow> B" "A: U i" "B: U i"
shows "f \<circ>\<^bsub>A\<^esub> (id A) \<equiv> f"
- unfolding id_def
by (subst eta_exp[of f]) (reduce, rule eta)
lemma id_U [typechk]: