aboutsummaryrefslogtreecommitdiff
path: root/spartan/theories/Spartan.thy
diff options
context:
space:
mode:
Diffstat (limited to 'spartan/theories/Spartan.thy')
-rw-r--r--spartan/theories/Spartan.thy481
1 files changed, 0 insertions, 481 deletions
diff --git a/spartan/theories/Spartan.thy b/spartan/theories/Spartan.thy
deleted file mode 100644
index d235041..0000000
--- a/spartan/theories/Spartan.thy
+++ /dev/null
@@ -1,481 +0,0 @@
-text \<open>Spartan type theory\<close>
-
-theory Spartan
-imports
- Pure
- "HOL-Eisbach.Eisbach"
- "HOL-Eisbach.Eisbach_Tools"
-keywords
- "Theorem" "Lemma" "Corollary" "Proposition" :: thy_goal_stmt and
- "focus" "\<guillemotright>" "\<^item>" "\<^enum>" "~" :: prf_script_goal % "proof" and
- "derive" "prems" "vars":: quasi_command and
- "print_coercions" :: thy_decl
-
-begin
-
-
-section \<open>Preamble\<close>
-
-declare [[eta_contract=false]]
-
-
-section \<open>Metatype setup\<close>
-
-typedecl o
-
-
-section \<open>Judgments\<close>
-
-judgment has_type :: \<open>o \<Rightarrow> o \<Rightarrow> prop\<close> ("(2_:/ _)" 999)
-
-
-section \<open>Universes\<close>
-
-typedecl lvl \<comment> \<open>Universe levels\<close>
-
-axiomatization
- O :: \<open>lvl\<close> and
- S :: \<open>lvl \<Rightarrow> lvl\<close> and
- lt :: \<open>lvl \<Rightarrow> lvl \<Rightarrow> prop\<close> (infix "<" 900)
- where
- O_min: "O < S i" and
- lt_S: "i < S i" and
- lt_trans: "i < j \<Longrightarrow> j < k \<Longrightarrow> i < k"
-
-axiomatization U :: \<open>lvl \<Rightarrow> o\<close> where
- U_hierarchy: "i < j \<Longrightarrow> U i: U j" and
- U_cumulative: "A: U i \<Longrightarrow> i < j \<Longrightarrow> A: U j"
-
-lemma U_in_U:
- "U i: U (S i)"
- by (rule U_hierarchy, rule lt_S)
-
-lemma lift_universe:
- "A: U i \<Longrightarrow> A: U (S i)"
- by (erule U_cumulative, rule lt_S)
-
-
-section \<open>\<Prod>-type\<close>
-
-axiomatization
- Pi :: \<open>o \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> o\<close> and
- lam :: \<open>o \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> o\<close> and
- app :: \<open>o \<Rightarrow> o \<Rightarrow> o\<close> ("(1_ `_)" [120, 121] 120)
-
-syntax
- "_Pi" :: \<open>idt \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> ("(2\<Prod>_: _./ _)" 30)
- "_lam" :: \<open>pttrns \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> ("(2\<lambda>_: _./ _)" 30)
- "_lam2" :: \<open>pttrns \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close>
-translations
- "\<Prod>x: A. B" \<rightleftharpoons> "CONST Pi A (\<lambda>x. B)"
- "\<lambda>x xs: A. b" \<rightharpoonup> "CONST lam A (\<lambda>x. _lam2 xs A b)"
- "_lam2 x A b" \<rightharpoonup> "\<lambda>x: A. b"
- "\<lambda>x: A. b" \<rightleftharpoons> "CONST lam A (\<lambda>x. b)"
-
-abbreviation Fn (infixr "\<rightarrow>" 40) where "A \<rightarrow> B \<equiv> \<Prod>_: A. B"
-
-axiomatization where
- PiF: "\<lbrakk>\<And>x. x: A \<Longrightarrow> B x: U i; A: U i\<rbrakk> \<Longrightarrow> \<Prod>x: A. B x: U i" and
-
- PiI: "\<lbrakk>\<And>x. x: A \<Longrightarrow> b x: B x; A: U i\<rbrakk> \<Longrightarrow> \<lambda>x: A. b x: \<Prod>x: A. B x" and
-
- PiE: "\<lbrakk>f: \<Prod>x: A. B x; a: A\<rbrakk> \<Longrightarrow> f `a: B a" and
-
- beta: "\<lbrakk>a: A; \<And>x. x: A \<Longrightarrow> b x: B x\<rbrakk> \<Longrightarrow> (\<lambda>x: A. b x) `a \<equiv> b a" and
-
- eta: "f: \<Prod>x: A. B x \<Longrightarrow> \<lambda>x: A. f `x \<equiv> f" and
-
- Pi_cong: "\<lbrakk>
- A: U i;
- \<And>x. x: A \<Longrightarrow> B x: U i;
- \<And>x. x: A \<Longrightarrow> B' x: U i;
- \<And>x. x: A \<Longrightarrow> B x \<equiv> B' x
- \<rbrakk> \<Longrightarrow> \<Prod>x: A. B x \<equiv> \<Prod>x: A. B' x" and
-
- lam_cong: "\<lbrakk>\<And>x. x: A \<Longrightarrow> b x \<equiv> c x; A: U i\<rbrakk> \<Longrightarrow> \<lambda>x: A. b x \<equiv> \<lambda>x: A. c x"
-
-
-section \<open>\<Sum>-type\<close>
-
-axiomatization
- Sig :: \<open>o \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> o\<close> and
- pair :: \<open>o \<Rightarrow> o \<Rightarrow> o\<close> ("(2<_,/ _>)") and
- SigInd :: \<open>o \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> (o \<Rightarrow> o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> o\<close>
-
-syntax "_Sum" :: \<open>idt \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> ("(2\<Sum>_: _./ _)" 20)
-
-translations "\<Sum>x: A. B" \<rightleftharpoons> "CONST Sig A (\<lambda>x. B)"
-
-abbreviation Prod (infixl "\<times>" 50)
- where "A \<times> B \<equiv> \<Sum>_: A. B"
-
-axiomatization where
- SigF: "\<lbrakk>\<And>x. x: A \<Longrightarrow> B x: U i; A: U i\<rbrakk> \<Longrightarrow> \<Sum>x: A. B x: U i" and
-
- SigI: "\<lbrakk>\<And>x. x: A \<Longrightarrow> B x: U i; a: A; b: B a\<rbrakk> \<Longrightarrow> <a, b>: \<Sum>x: A. B x" and
-
- SigE: "\<lbrakk>
- p: \<Sum>x: A. B x;
- A: U i;
- \<And>x. x : A \<Longrightarrow> B x: U i;
- \<And>p. p: \<Sum>x: A. B x \<Longrightarrow> C p: U i;
- \<And>x y. \<lbrakk>x: A; y: B x\<rbrakk> \<Longrightarrow> f x y: C <x, y>
- \<rbrakk> \<Longrightarrow> SigInd A (\<lambda>x. B x) (\<lambda>p. C p) f p: C p" and
-
- Sig_comp: "\<lbrakk>
- a: A;
- b: B a;
- \<And>x. x: A \<Longrightarrow> B x: U i;
- \<And>p. p: \<Sum>x: A. B x \<Longrightarrow> C p: U i;
- \<And>x y. \<lbrakk>x: A; y: B x\<rbrakk> \<Longrightarrow> f x y: C <x, y>
- \<rbrakk> \<Longrightarrow> SigInd A (\<lambda>x. B x) (\<lambda>p. C p) f <a, b> \<equiv> f a b" and
-
- Sig_cong: "\<lbrakk>
- \<And>x. x: A \<Longrightarrow> B x \<equiv> B' x;
- A: U i;
- \<And>x. x : A \<Longrightarrow> B x: U i;
- \<And>x. x : A \<Longrightarrow> B' x: U i
- \<rbrakk> \<Longrightarrow> \<Sum>x: A. B x \<equiv> \<Sum>x: A. B' x"
-
-
-section \<open>Proof commands\<close>
-
-named_theorems typechk
-
-ML_file \<open>../lib/lib.ML\<close>
-ML_file \<open>../lib/goals.ML\<close>
-ML_file \<open>../lib/focus.ML\<close>
-
-
-section \<open>Congruence automation\<close>
-
-(*Potential to be retired*)
-ML_file \<open>../lib/congruence.ML\<close>
-
-
-section \<open>Methods\<close>
-
-ML_file \<open>../lib/elimination.ML\<close> \<comment> \<open>declares the [elims] attribute\<close>
-
-named_theorems intros and comps
-lemmas
- [intros] = PiF PiI SigF SigI and
- [elims "?f"] = PiE and
- [elims "?p"] = SigE and
- [comps] = beta Sig_comp and
- [cong] = Pi_cong lam_cong Sig_cong
-
-ML_file \<open>../lib/tactics.ML\<close>
-
-method_setup assumptions =
- \<open>Scan.succeed (fn ctxt => SIMPLE_METHOD (
- CHANGED (TRYALL (assumptions_tac ctxt))))\<close>
-
-method_setup known =
- \<open>Scan.succeed (fn ctxt => SIMPLE_METHOD (
- CHANGED (TRYALL (known_tac ctxt))))\<close>
-
-method_setup intro =
- \<open>Scan.succeed (fn ctxt => SIMPLE_METHOD (HEADGOAL (intro_tac ctxt)))\<close>
-
-method_setup intros =
- \<open>Scan.succeed (fn ctxt => SIMPLE_METHOD (HEADGOAL (intros_tac ctxt)))\<close>
-
-method_setup old_elim =
- \<open>Scan.option Args.term >> (fn tm => fn ctxt =>
- SIMPLE_METHOD' (SIDE_CONDS (old_elims_tac tm ctxt) ctxt))\<close>
-
-method_setup elim =
- \<open>Scan.repeat Args.term >> (fn tms => fn ctxt =>
- CONTEXT_METHOD (K (elim_context_tac tms ctxt 1)))\<close>
-
-method elims = elim+
-
-(*This could possibly use additional simplification hints via a simp: modifier*)
-method_setup typechk =
- \<open>Scan.succeed (fn ctxt => SIMPLE_METHOD' (
- SIDE_CONDS (typechk_tac ctxt) ctxt))
- (* CHANGED (ALLGOALS (TRY o typechk_tac ctxt)))) *)\<close>
-
-method_setup rule =
- \<open>Attrib.thms >> (fn ths => fn ctxt =>
- SIMPLE_METHOD (HEADGOAL (SIDE_CONDS (rule_tac ths ctxt) ctxt)))\<close>
-
-method_setup dest =
- \<open>Scan.lift (Scan.option (Args.parens Parse.int)) -- Attrib.thms
- >> (fn (opt_n, ths) => fn ctxt =>
- SIMPLE_METHOD (HEADGOAL (SIDE_CONDS (dest_tac opt_n ths ctxt) ctxt)))\<close>
-
-subsection \<open>Reflexivity\<close>
-
-named_theorems refl
-method refl = (rule refl)
-
-subsection \<open>Trivial proofs modulo typechecking\<close>
-
-method_setup this =
- \<open>Scan.succeed (fn ctxt => METHOD (
- EVERY o map (HEADGOAL o
- (fn ths => SIDE_CONDS (resolve_tac ctxt ths) ctxt) o
- single)
- ))\<close>
-
-subsection \<open>Rewriting\<close>
-
-\<comment> \<open>\<open>subst\<close> method\<close>
-ML_file "~~/src/Tools/misc_legacy.ML"
-ML_file "~~/src/Tools/IsaPlanner/isand.ML"
-ML_file "~~/src/Tools/IsaPlanner/rw_inst.ML"
-ML_file "~~/src/Tools/IsaPlanner/zipper.ML"
-ML_file "../lib/eqsubst.ML"
-
-\<comment> \<open>\<open>rewrite\<close> method\<close>
-consts rewrite_HOLE :: "'a::{}" ("\<hole>")
-
-lemma eta_expand:
- fixes f :: "'a::{} \<Rightarrow> 'b::{}"
- shows "f \<equiv> \<lambda>x. f x" .
-
-lemma rewr_imp:
- assumes "PROP A \<equiv> PROP B"
- shows "(PROP A \<Longrightarrow> PROP C) \<equiv> (PROP B \<Longrightarrow> PROP C)"
- apply (rule Pure.equal_intr_rule)
- apply (drule equal_elim_rule2[OF assms]; assumption)
- apply (drule equal_elim_rule1[OF assms]; assumption)
- done
-
-lemma imp_cong_eq:
- "(PROP A \<Longrightarrow> (PROP B \<Longrightarrow> PROP C) \<equiv> (PROP B' \<Longrightarrow> PROP C')) \<equiv>
- ((PROP B \<Longrightarrow> PROP A \<Longrightarrow> PROP C) \<equiv> (PROP B' \<Longrightarrow> PROP A \<Longrightarrow> PROP C'))"
- apply (Pure.intro Pure.equal_intr_rule)
- apply (drule (1) cut_rl; drule Pure.equal_elim_rule1 Pure.equal_elim_rule2;
- assumption)+
- apply (drule Pure.equal_elim_rule1 Pure.equal_elim_rule2; assumption)+
- done
-
-ML_file \<open>~~/src/HOL/Library/cconv.ML\<close>
-ML_file \<open>../lib/rewrite.ML\<close>
-
-\<comment> \<open>\<open>reduce\<close> computes terms via judgmental equalities\<close>
-setup \<open>map_theory_simpset (fn ctxt => ctxt addSolver (mk_solver "" typechk_tac))\<close>
-
-method reduce uses add = (simp add: comps add | subst comps)+
-
-
-section \<open>Implicit notations\<close>
-
-text \<open>
- \<open>?\<close> is used to mark implicit arguments in definitions, while \<open>{}\<close> is expanded
- immediately for elaboration in statements.
-\<close>
-
-consts
- iarg :: \<open>'a\<close> ("?")
- hole :: \<open>'b\<close> ("{}")
-
-ML_file \<open>../lib/implicits.ML\<close>
-
-attribute_setup implicit = \<open>Scan.succeed Implicits.implicit_defs_attr\<close>
-
-ML \<open>
-val _ = Context.>>
- (Syntax_Phases.term_check 1 "" (fn ctxt => map (Implicits.make_holes ctxt)))
-\<close>
-
-text \<open>Automatically insert inhabitation judgments where needed:\<close>
-
-consts inhabited :: \<open>o \<Rightarrow> prop\<close> ("(_)")
-translations "CONST inhabited A" \<rightharpoonup> "CONST has_type {} A"
-
-
-section \<open>Lambda coercion\<close>
-
-\<comment> \<open>Coerce object lambdas to meta-lambdas\<close>
-abbreviation (input) lambda :: \<open>o \<Rightarrow> o \<Rightarrow> o\<close>
- where "lambda f \<equiv> \<lambda>x. f `x"
-
-ML_file \<open>~~/src/Tools/subtyping.ML\<close>
-declare [[coercion_enabled, coercion lambda]]
-
-translations "f x" \<leftharpoondown> "f `x"
-
-
-section \<open>Functions\<close>
-
-lemma eta_exp:
- assumes "f: \<Prod>x: A. B x"
- shows "f \<equiv> \<lambda>x: A. f x"
- by (rule eta[symmetric])
-
-lemma lift_universe_codomain:
- assumes "A: U i" "f: A \<rightarrow> U j"
- shows "f: A \<rightarrow> U (S j)"
- apply (sub eta_exp)
- apply known
- apply (Pure.rule intros; rule lift_universe)
- done
-
-subsection \<open>Function composition\<close>
-
-definition "funcomp A g f \<equiv> \<lambda>x: A. g `(f `x)"
-
-syntax
- "_funcomp" :: \<open>o \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> ("(2_ \<circ>\<^bsub>_\<^esub>/ _)" [111, 0, 110] 110)
-translations
- "g \<circ>\<^bsub>A\<^esub> f" \<rightleftharpoons> "CONST funcomp A g f"
-
-lemma funcompI [typechk]:
- assumes
- "A: U i"
- "B: U i"
- "\<And>x. x: B \<Longrightarrow> C x: U i"
- "f: A \<rightarrow> B"
- "g: \<Prod>x: B. C x"
- shows
- "g \<circ>\<^bsub>A\<^esub> f: \<Prod>x: A. C (f x)"
- unfolding funcomp_def by typechk
-
-lemma funcomp_assoc [comps]:
- assumes
- "f: A \<rightarrow> B"
- "g: B \<rightarrow> C"
- "h: \<Prod>x: C. D x"
- "A: U i"
- shows
- "(h \<circ>\<^bsub>B\<^esub> g) \<circ>\<^bsub>A\<^esub> f \<equiv> h \<circ>\<^bsub>A\<^esub> g \<circ>\<^bsub>A\<^esub> f"
- unfolding funcomp_def by reduce
-
-lemma funcomp_lambda_comp [comps]:
- assumes
- "A: U i"
- "\<And>x. x: A \<Longrightarrow> b x: B"
- "\<And>x. x: B \<Longrightarrow> c x: C x"
- shows
- "(\<lambda>x: B. c x) \<circ>\<^bsub>A\<^esub> (\<lambda>x: A. b x) \<equiv> \<lambda>x: A. c (b x)"
- unfolding funcomp_def by reduce
-
-lemma funcomp_apply_comp [comps]:
- assumes
- "f: A \<rightarrow> B" "g: \<Prod>x: B. C x"
- "x: A"
- "A: U i" "B: U i"
- "\<And>x y. x: B \<Longrightarrow> C x: U i"
- shows "(g \<circ>\<^bsub>A\<^esub> f) x \<equiv> g (f x)"
- unfolding funcomp_def by reduce
-
-text \<open>Notation:\<close>
-
-definition funcomp_i (infixr "\<circ>" 120)
- where [implicit]: "funcomp_i g f \<equiv> g \<circ>\<^bsub>?\<^esub> f"
-
-translations "g \<circ> f" \<leftharpoondown> "g \<circ>\<^bsub>A\<^esub> f"
-
-subsection \<open>Identity function\<close>
-
-abbreviation id where "id A \<equiv> \<lambda>x: A. x"
-
-lemma
- id_type[typechk]: "A: U i \<Longrightarrow> id A: A \<rightarrow> A" and
- id_comp [comps]: "x: A \<Longrightarrow> (id A) x \<equiv> x" \<comment> \<open>for the occasional manual rewrite\<close>
- by reduce
-
-lemma id_left [comps]:
- assumes "f: A \<rightarrow> B" "A: U i" "B: U i"
- shows "(id B) \<circ>\<^bsub>A\<^esub> f \<equiv> f"
- by (subst eta_exp[of f]) (reduce, rule eta)
-
-lemma id_right [comps]:
- assumes "f: A \<rightarrow> B" "A: U i" "B: U i"
- shows "f \<circ>\<^bsub>A\<^esub> (id A) \<equiv> f"
- by (subst eta_exp[of f]) (reduce, rule eta)
-
-lemma id_U [typechk]:
- "id (U i): U i \<rightarrow> U i"
- by typechk (fact U_in_U)
-
-
-section \<open>Pairs\<close>
-
-definition "fst A B \<equiv> \<lambda>p: \<Sum>x: A. B x. SigInd A B (\<lambda>_. A) (\<lambda>x y. x) p"
-definition "snd A B \<equiv> \<lambda>p: \<Sum>x: A. B x. SigInd A B (\<lambda>p. B (fst A B p)) (\<lambda>x y. y) p"
-
-lemma fst_type [typechk]:
- assumes "A: U i" "\<And>x. x: A \<Longrightarrow> B x: U i"
- shows "fst A B: (\<Sum>x: A. B x) \<rightarrow> A"
- unfolding fst_def by typechk
-
-lemma fst_comp [comps]:
- assumes
- "a: A"
- "b: B a"
- "A: U i"
- "\<And>x. x: A \<Longrightarrow> B x: U i"
- shows "fst A B <a, b> \<equiv> a"
- unfolding fst_def by reduce
-
-lemma snd_type [typechk]:
- assumes "A: U i" "\<And>x. x: A \<Longrightarrow> B x: U i"
- shows "snd A B: \<Prod>p: \<Sum>x: A. B x. B (fst A B p)"
- unfolding snd_def by typechk reduce
-
-lemma snd_comp [comps]:
- assumes "a: A" "b: B a" "A: U i" "\<And>x. x: A \<Longrightarrow> B x: U i"
- shows "snd A B <a, b> \<equiv> b"
- unfolding snd_def by reduce
-
-subsection \<open>Notation\<close>
-
-definition fst_i ("fst")
- where [implicit]: "fst \<equiv> Spartan.fst ? ?"
-
-definition snd_i ("snd")
- where [implicit]: "snd \<equiv> Spartan.snd ? ?"
-
-translations
- "fst" \<leftharpoondown> "CONST Spartan.fst A B"
- "snd" \<leftharpoondown> "CONST Spartan.snd A B"
-
-subsection \<open>Projections\<close>
-
-Lemma fst [typechk]:
- assumes
- "p: \<Sum>x: A. B x"
- "A: U i" "\<And>x. x: A \<Longrightarrow> B x: U i"
- shows "fst p: A"
- by typechk
-
-Lemma snd [typechk]:
- assumes
- "p: \<Sum>x: A. B x"
- "A: U i" "\<And>x. x: A \<Longrightarrow> B x: U i"
- shows "snd p: B (fst p)"
- by typechk
-
-method fst for p::o = rule fst[of p]
-method snd for p::o = rule snd[of p]
-
-subsection \<open>Properties of \<Sigma>\<close>
-
-Lemma (derive) Sig_dist_exp:
- assumes
- "p: \<Sum>x: A. B x \<times> C x"
- "A: U i"
- "\<And>x. x: A \<Longrightarrow> B x: U i"
- "\<And>x. x: A \<Longrightarrow> C x: U i"
- shows "(\<Sum>x: A. B x) \<times> (\<Sum>x: A. C x)"
- apply (elim p)
- focus vars x y
- apply intro
- \<guillemotright> apply intro
- apply assumption
- apply (fst y)
- done
- \<guillemotright> apply intro
- apply assumption
- apply (snd y)
- done
- done
- done
-
-
-end