aboutsummaryrefslogtreecommitdiff
path: root/spartan/lib
diff options
context:
space:
mode:
Diffstat (limited to 'spartan/lib')
-rw-r--r--spartan/lib/List.thy192
-rw-r--r--spartan/lib/Maybe.thy76
-rw-r--r--spartan/lib/More_Types.thy104
3 files changed, 372 insertions, 0 deletions
diff --git a/spartan/lib/List.thy b/spartan/lib/List.thy
new file mode 100644
index 0000000..1798a23
--- /dev/null
+++ b/spartan/lib/List.thy
@@ -0,0 +1,192 @@
+chapter \<open>Lists\<close>
+
+theory List
+imports Maybe
+
+begin
+
+(*TODO: Inductive type and recursive function definitions. The ad-hoc
+ axiomatization below should be subsumed once general inductive types are
+ properly implemented.*)
+
+axiomatization
+ List :: \<open>o \<Rightarrow> o\<close> and
+ nil :: \<open>o \<Rightarrow> o\<close> and
+ cons :: \<open>o \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> and
+ ListInd :: \<open>o \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> (o \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> o\<close>
+where
+ ListF: "A: U i \<Longrightarrow> List A: U i" and
+
+ List_nil: "A: U i \<Longrightarrow> nil A: List A" and
+
+ List_cons: "\<lbrakk>x: A; xs: List A\<rbrakk> \<Longrightarrow> cons A x xs: List A" and
+
+ ListE: "\<lbrakk>
+ xs: List A;
+ c\<^sub>0: C (nil A);
+ \<And>x xs rec. \<lbrakk>x: A; xs: List A; rec: C xs\<rbrakk> \<Longrightarrow> f x xs rec: C (cons A x xs);
+ \<And>xs. xs: List A \<Longrightarrow> C xs: U i
+ \<rbrakk> \<Longrightarrow> ListInd A (\<lambda>xs. C xs) c\<^sub>0 (\<lambda>x xs rec. f x xs rec) xs: C xs" and
+
+ List_comp_nil: "\<lbrakk>
+ c\<^sub>0: C (nil A);
+ \<And>x xs rec. \<lbrakk>x: A; xs: List A; rec: C xs\<rbrakk> \<Longrightarrow> f x xs rec: C (cons A x xs);
+ \<And>xs. xs: List A \<Longrightarrow> C xs: U i
+ \<rbrakk> \<Longrightarrow> ListInd A (\<lambda>xs. C xs) c\<^sub>0 (\<lambda>x xs rec. f x xs rec) (nil A) \<equiv> c\<^sub>0" and
+
+ List_comp_cons: "\<lbrakk>
+ xs: List A;
+ c\<^sub>0: C (nil A);
+ \<And>x xs rec. \<lbrakk>x: A; xs: List A; rec: C xs\<rbrakk> \<Longrightarrow> f x xs rec: C (cons A x xs);
+ \<And>xs. xs: List A \<Longrightarrow> C xs: U i
+ \<rbrakk> \<Longrightarrow>
+ ListInd A (\<lambda>xs. C xs) c\<^sub>0 (\<lambda>x xs rec. f x xs rec) (cons A x xs) \<equiv>
+ f x xs (ListInd A (\<lambda>xs. C xs) c\<^sub>0 (\<lambda>x xs rec. f x xs rec) xs)"
+
+lemmas
+ [intros] = ListF List_nil List_cons and
+ [elims "?xs"] = ListE and
+ [comps] = List_comp_nil List_comp_cons
+
+abbreviation "ListRec A C \<equiv> ListInd A (\<lambda>_. C)"
+
+Lemma (derive) ListCase:
+ assumes
+ "xs: List A" and
+ nil_case: "c\<^sub>0: C (nil A)" and
+ cons_case: "\<And>x xs. \<lbrakk>x: A; xs: List A\<rbrakk> \<Longrightarrow> f x xs: C (cons A x xs)" and
+ "\<And>xs. xs: List A \<Longrightarrow> C xs: U i"
+ shows "?List_cases A (\<lambda>xs. C xs) c\<^sub>0 (\<lambda>x xs. f x xs) xs: C xs"
+ by (elim xs) (fact nil_case, rule cons_case)
+
+lemmas List_cases [cases] = ListCase[unfolded ListCase_def]
+
+
+section \<open>Notation\<close>
+
+definition nil_i ("[]")
+ where [implicit]: "[] \<equiv> nil ?"
+
+definition cons_i (infixr "#" 120)
+ where [implicit]: "x # xs \<equiv> cons ? x xs"
+
+translations
+ "[]" \<leftharpoondown> "CONST List.nil A"
+ "x # xs" \<leftharpoondown> "CONST List.cons A x xs"
+syntax
+ "_list" :: \<open>args \<Rightarrow> o\<close> ("[_]")
+translations
+ "[x, xs]" \<rightleftharpoons> "x # [xs]"
+ "[x]" \<rightleftharpoons> "x # []"
+
+
+section \<open>Standard functions\<close>
+
+subsection \<open>Head and tail\<close>
+
+Lemma (derive) head:
+ assumes "A: U i" "xs: List A"
+ shows "Maybe A"
+proof (cases xs)
+ show "none: Maybe A" by intro
+ show "\<And>x. x: A \<Longrightarrow> some x: Maybe A" by intro
+qed
+
+Lemma (derive) tail:
+ assumes "A: U i" "xs: List A"
+ shows "List A"
+proof (cases xs)
+ show "[]: List A" by intro
+ show "\<And>xs. xs: List A \<Longrightarrow> xs: List A" .
+qed
+
+definition head_i ("head") where [implicit]: "head xs \<equiv> List.head ? xs"
+definition tail_i ("tail") where [implicit]: "tail xs \<equiv> List.tail ? xs"
+
+translations
+ "head" \<leftharpoondown> "CONST List.head A"
+ "tail" \<leftharpoondown> "CONST List.tail A"
+
+Lemma head_type [typechk]:
+ assumes "A: U i" "xs: List A"
+ shows "head xs: Maybe A"
+ unfolding head_def by typechk
+
+Lemma head_of_cons [comps]:
+ assumes "A: U i" "x: A" "xs: List A"
+ shows "head (x # xs) \<equiv> some x"
+ unfolding head_def ListCase_def by reduce
+
+Lemma tail_type [typechk]:
+ assumes "A: U i" "xs: List A"
+ shows "tail xs: List A"
+ unfolding tail_def by typechk
+
+Lemma tail_of_cons [comps]:
+ assumes "A: U i" "x: A" "xs: List A"
+ shows "tail (x # xs) \<equiv> xs"
+ unfolding tail_def ListCase_def by reduce
+
+subsection \<open>Append\<close>
+
+Lemma (derive) app:
+ assumes "A: U i" "xs: List A" "ys: List A"
+ shows "List A"
+ apply (elim xs)
+ \<guillemotright> by (fact \<open>ys:_\<close>)
+ \<guillemotright> prems vars x _ rec
+ proof - show "x # rec: List A" by typechk qed
+ done
+
+definition app_i ("app") where [implicit]: "app xs ys \<equiv> List.app ? xs ys"
+
+translations "app" \<leftharpoondown> "CONST List.app A"
+
+subsection \<open>Map\<close>
+
+Lemma (derive) map:
+ assumes "A: U i" "B: U i" "f: A \<rightarrow> B" "xs: List A"
+ shows "List B"
+proof (elim xs)
+ show "[]: List B" by intro
+ next fix x ys
+ assume "x: A" "ys: List B"
+ show "f x # ys: List B" by typechk
+qed
+
+definition map_i ("map") where [implicit]: "map \<equiv> List.map ? ?"
+
+translations "map" \<leftharpoondown> "CONST List.map A B"
+
+Lemma map_type [typechk]:
+ assumes "A: U i" "B: U i" "f: A \<rightarrow> B" "xs: List A"
+ shows "map f xs: List B"
+ unfolding map_def by typechk
+
+
+subsection \<open>Reverse\<close>
+
+Lemma (derive) rev:
+ assumes "A: U i" "xs: List A"
+ shows "List A"
+ apply (elim xs)
+ \<guillemotright> by (rule List_nil)
+ \<guillemotright> prems vars x _ rec proof - show "app rec [x]: List A" by typechk qed
+ done
+
+definition rev_i ("rev") where [implicit]: "rev \<equiv> List.rev ?"
+
+translations "rev" \<leftharpoondown> "CONST List.rev A"
+
+Lemma rev_type [typechk]:
+ assumes "A: U i" "xs: List A"
+ shows "rev xs: List A"
+ unfolding rev_def by typechk
+
+Lemma rev_nil [comps]:
+ assumes "A: U i"
+ shows "rev (nil A) \<equiv> nil A"
+ unfolding rev_def by reduce
+
+
+end
diff --git a/spartan/lib/Maybe.thy b/spartan/lib/Maybe.thy
new file mode 100644
index 0000000..1efbb95
--- /dev/null
+++ b/spartan/lib/Maybe.thy
@@ -0,0 +1,76 @@
+chapter \<open>Maybe type\<close>
+
+theory Maybe
+imports More_Types
+
+begin
+
+text \<open>Defined as a sum.\<close>
+
+definition "Maybe A \<equiv> A \<or> \<top>"
+definition "none A \<equiv> inr A \<top> tt"
+definition "some A a \<equiv> inl A \<top> a"
+
+lemma
+ MaybeF: "A: U i \<Longrightarrow> Maybe A: U i" and
+ Maybe_none: "A: U i \<Longrightarrow> none A: Maybe A" and
+ Maybe_some: "a: A \<Longrightarrow> some A a: Maybe A"
+ unfolding Maybe_def none_def some_def by typechk+
+
+Lemma (derive) MaybeInd:
+ assumes
+ "A: U i"
+ "\<And>m. m: Maybe A \<Longrightarrow> C m: U i"
+ "c\<^sub>0: C (none A)"
+ "\<And>a. a: A \<Longrightarrow> f a: C (some A a)"
+ "m: Maybe A"
+ shows "?MaybeInd A (\<lambda>m. C m) c\<^sub>0 (\<lambda>a. f a) m: C m"
+ supply assms[unfolded Maybe_def none_def some_def]
+ apply (elim m)
+ \<guillemotright> unfolding Maybe_def .
+ \<guillemotright> by (rule \<open>_ \<Longrightarrow> _: C (inl _ _ _)\<close>)
+ \<guillemotright> by elim (rule \<open>_: C (inr _ _ _)\<close>)
+ done
+
+Lemma Maybe_comp_none:
+ assumes
+ "A: U i"
+ "c\<^sub>0: C (none A)"
+ "\<And>a. a: A \<Longrightarrow> f a: C (some A a)"
+ "\<And>m. m: Maybe A \<Longrightarrow> C m: U i"
+ shows "MaybeInd A (\<lambda>m. C m) c\<^sub>0 (\<lambda>a. f a) (none A) \<equiv> c\<^sub>0"
+ supply assms[unfolded Maybe_def some_def none_def]
+ unfolding MaybeInd_def none_def by reduce
+
+Lemma Maybe_comp_some:
+ assumes
+ "A: U i"
+ "a: A"
+ "c\<^sub>0: C (none A)"
+ "\<And>a. a: A \<Longrightarrow> f a: C (some A a)"
+ "\<And>m. m: Maybe A \<Longrightarrow> C m: U i"
+ shows "MaybeInd A (\<lambda>m. C m) c\<^sub>0 (\<lambda>a. f a) (some A a) \<equiv> f a"
+ supply assms[unfolded Maybe_def some_def none_def]
+ unfolding MaybeInd_def some_def by (reduce add: Maybe_def)
+
+lemmas
+ [intros] = MaybeF Maybe_none Maybe_some and
+ [comps] = Maybe_comp_none Maybe_comp_some and
+ MaybeE [elims "?m"] = MaybeInd[rotated 4]
+lemmas
+ Maybe_cases [cases] = MaybeE
+
+abbreviation "MaybeRec A C \<equiv> MaybeInd A (K C)"
+
+definition none_i ("none")
+ where [implicit]: "none \<equiv> Maybe.none ?"
+
+definition some_i ("some")
+ where [implicit]: "some a \<equiv> Maybe.some ? a"
+
+translations
+ "none" \<leftharpoondown> "CONST Maybe.none A"
+ "some a" \<leftharpoondown> "CONST Maybe.some A a"
+
+
+end
diff --git a/spartan/lib/More_Types.thy b/spartan/lib/More_Types.thy
new file mode 100644
index 0000000..1d7abb9
--- /dev/null
+++ b/spartan/lib/More_Types.thy
@@ -0,0 +1,104 @@
+chapter \<open>Some standard types\<close>
+
+theory More_Types
+imports Spartan
+
+begin
+
+section \<open>Sum type\<close>
+
+axiomatization
+ Sum :: \<open>o \<Rightarrow> o \<Rightarrow> o\<close> and
+ inl :: \<open>o \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> and
+ inr :: \<open>o \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> and
+ SumInd :: \<open>o \<Rightarrow> o \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> o\<close>
+
+notation Sum (infixl "\<or>" 50)
+
+axiomatization where
+ SumF: "\<lbrakk>A: U i; B: U i\<rbrakk> \<Longrightarrow> A \<or> B: U i" and
+
+ Sum_inl: "\<lbrakk>a: A; B: U i\<rbrakk> \<Longrightarrow> inl A B a: A \<or> B" and
+
+ Sum_inr: "\<lbrakk>b: B; A: U i\<rbrakk> \<Longrightarrow> inr A B b: A \<or> B" and
+
+ SumE: "\<lbrakk>
+ s: A \<or> B;
+ \<And>s. s: A \<or> B \<Longrightarrow> C s: U i;
+ \<And>a. a: A \<Longrightarrow> c a: C (inl A B a);
+ \<And>b. b: B \<Longrightarrow> d b: C (inr A B b)
+ \<rbrakk> \<Longrightarrow> SumInd A B (\<lambda>s. C s) (\<lambda>a. c a) (\<lambda>b. d b) s: C s" and
+
+ Sum_comp_inl: "\<lbrakk>
+ a: A;
+ \<And>s. s: A \<or> B \<Longrightarrow> C s: U i;
+ \<And>a. a: A \<Longrightarrow> c a: C (inl A B a);
+ \<And>b. b: B \<Longrightarrow> d b: C (inr A B b)
+ \<rbrakk> \<Longrightarrow> SumInd A B (\<lambda>s. C s) (\<lambda>a. c a) (\<lambda>b. d b) (inl A B a) \<equiv> c a" and
+
+ Sum_comp_inr: "\<lbrakk>
+ b: B;
+ \<And>s. s: A \<or> B \<Longrightarrow> C s: U i;
+ \<And>a. a: A \<Longrightarrow> c a: C (inl A B a);
+ \<And>b. b: B \<Longrightarrow> d b: C (inr A B b)
+ \<rbrakk> \<Longrightarrow> SumInd A B (\<lambda>s. C s) (\<lambda>a. c a) (\<lambda>b. d b) (inr A B b) \<equiv> d b"
+
+lemmas
+ [intros] = SumF Sum_inl Sum_inr and
+ [elims ?s] = SumE and
+ [comps] = Sum_comp_inl Sum_comp_inr
+
+method left = rule Sum_inl
+method right = rule Sum_inr
+
+
+section \<open>Empty and unit types\<close>
+
+axiomatization
+ Top :: \<open>o\<close> and
+ tt :: \<open>o\<close> and
+ TopInd :: \<open>(o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close>
+and
+ Bot :: \<open>o\<close> and
+ BotInd :: \<open>(o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> o\<close>
+
+notation Top ("\<top>") and Bot ("\<bottom>")
+
+axiomatization where
+ TopF: "\<top>: U i" and
+
+ TopI: "tt: \<top>" and
+
+ TopE: "\<lbrakk>a: \<top>; \<And>x. x: \<top> \<Longrightarrow> C x: U i; c: C tt\<rbrakk> \<Longrightarrow> TopInd (\<lambda>x. C x) c a: C a" and
+
+ Top_comp: "\<lbrakk>\<And>x. x: \<top> \<Longrightarrow> C x: U i; c: C tt\<rbrakk> \<Longrightarrow> TopInd (\<lambda>x. C x) c tt \<equiv> c"
+and
+ BotF: "\<bottom>: U i" and
+
+ BotE: "\<lbrakk>x: \<bottom>; \<And>x. x: \<bottom> \<Longrightarrow> C x: U i\<rbrakk> \<Longrightarrow> BotInd (\<lambda>x. C x) x: C x"
+
+lemmas
+ [intros] = TopF TopI BotF and
+ [elims ?a] = TopE and
+ [elims ?x] = BotE and
+ [comps] = Top_comp
+
+
+section \<open>Booleans\<close>
+
+definition "Bool \<equiv> \<top> \<or> \<top>"
+definition "true \<equiv> inl \<top> \<top> tt"
+definition "false \<equiv> inr \<top> \<top> tt"
+
+Lemma
+ BoolF: "Bool: U i" and
+ Bool_true: "true: Bool" and
+ Bool_false: "false: Bool"
+ unfolding Bool_def true_def false_def by typechk+
+
+lemmas [intros] = BoolF Bool_true Bool_false
+
+\<comment> \<open>Can define if-then-else etc.\<close>
+
+
+end