diff options
Diffstat (limited to 'spartan/lib')
-rw-r--r-- | spartan/lib/List.thy | 192 | ||||
-rw-r--r-- | spartan/lib/Maybe.thy | 76 | ||||
-rw-r--r-- | spartan/lib/More_Types.thy | 104 |
3 files changed, 372 insertions, 0 deletions
diff --git a/spartan/lib/List.thy b/spartan/lib/List.thy new file mode 100644 index 0000000..1798a23 --- /dev/null +++ b/spartan/lib/List.thy @@ -0,0 +1,192 @@ +chapter \<open>Lists\<close> + +theory List +imports Maybe + +begin + +(*TODO: Inductive type and recursive function definitions. The ad-hoc + axiomatization below should be subsumed once general inductive types are + properly implemented.*) + +axiomatization + List :: \<open>o \<Rightarrow> o\<close> and + nil :: \<open>o \<Rightarrow> o\<close> and + cons :: \<open>o \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> and + ListInd :: \<open>o \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> (o \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> o\<close> +where + ListF: "A: U i \<Longrightarrow> List A: U i" and + + List_nil: "A: U i \<Longrightarrow> nil A: List A" and + + List_cons: "\<lbrakk>x: A; xs: List A\<rbrakk> \<Longrightarrow> cons A x xs: List A" and + + ListE: "\<lbrakk> + xs: List A; + c\<^sub>0: C (nil A); + \<And>x xs rec. \<lbrakk>x: A; xs: List A; rec: C xs\<rbrakk> \<Longrightarrow> f x xs rec: C (cons A x xs); + \<And>xs. xs: List A \<Longrightarrow> C xs: U i + \<rbrakk> \<Longrightarrow> ListInd A (\<lambda>xs. C xs) c\<^sub>0 (\<lambda>x xs rec. f x xs rec) xs: C xs" and + + List_comp_nil: "\<lbrakk> + c\<^sub>0: C (nil A); + \<And>x xs rec. \<lbrakk>x: A; xs: List A; rec: C xs\<rbrakk> \<Longrightarrow> f x xs rec: C (cons A x xs); + \<And>xs. xs: List A \<Longrightarrow> C xs: U i + \<rbrakk> \<Longrightarrow> ListInd A (\<lambda>xs. C xs) c\<^sub>0 (\<lambda>x xs rec. f x xs rec) (nil A) \<equiv> c\<^sub>0" and + + List_comp_cons: "\<lbrakk> + xs: List A; + c\<^sub>0: C (nil A); + \<And>x xs rec. \<lbrakk>x: A; xs: List A; rec: C xs\<rbrakk> \<Longrightarrow> f x xs rec: C (cons A x xs); + \<And>xs. xs: List A \<Longrightarrow> C xs: U i + \<rbrakk> \<Longrightarrow> + ListInd A (\<lambda>xs. C xs) c\<^sub>0 (\<lambda>x xs rec. f x xs rec) (cons A x xs) \<equiv> + f x xs (ListInd A (\<lambda>xs. C xs) c\<^sub>0 (\<lambda>x xs rec. f x xs rec) xs)" + +lemmas + [intros] = ListF List_nil List_cons and + [elims "?xs"] = ListE and + [comps] = List_comp_nil List_comp_cons + +abbreviation "ListRec A C \<equiv> ListInd A (\<lambda>_. C)" + +Lemma (derive) ListCase: + assumes + "xs: List A" and + nil_case: "c\<^sub>0: C (nil A)" and + cons_case: "\<And>x xs. \<lbrakk>x: A; xs: List A\<rbrakk> \<Longrightarrow> f x xs: C (cons A x xs)" and + "\<And>xs. xs: List A \<Longrightarrow> C xs: U i" + shows "?List_cases A (\<lambda>xs. C xs) c\<^sub>0 (\<lambda>x xs. f x xs) xs: C xs" + by (elim xs) (fact nil_case, rule cons_case) + +lemmas List_cases [cases] = ListCase[unfolded ListCase_def] + + +section \<open>Notation\<close> + +definition nil_i ("[]") + where [implicit]: "[] \<equiv> nil ?" + +definition cons_i (infixr "#" 120) + where [implicit]: "x # xs \<equiv> cons ? x xs" + +translations + "[]" \<leftharpoondown> "CONST List.nil A" + "x # xs" \<leftharpoondown> "CONST List.cons A x xs" +syntax + "_list" :: \<open>args \<Rightarrow> o\<close> ("[_]") +translations + "[x, xs]" \<rightleftharpoons> "x # [xs]" + "[x]" \<rightleftharpoons> "x # []" + + +section \<open>Standard functions\<close> + +subsection \<open>Head and tail\<close> + +Lemma (derive) head: + assumes "A: U i" "xs: List A" + shows "Maybe A" +proof (cases xs) + show "none: Maybe A" by intro + show "\<And>x. x: A \<Longrightarrow> some x: Maybe A" by intro +qed + +Lemma (derive) tail: + assumes "A: U i" "xs: List A" + shows "List A" +proof (cases xs) + show "[]: List A" by intro + show "\<And>xs. xs: List A \<Longrightarrow> xs: List A" . +qed + +definition head_i ("head") where [implicit]: "head xs \<equiv> List.head ? xs" +definition tail_i ("tail") where [implicit]: "tail xs \<equiv> List.tail ? xs" + +translations + "head" \<leftharpoondown> "CONST List.head A" + "tail" \<leftharpoondown> "CONST List.tail A" + +Lemma head_type [typechk]: + assumes "A: U i" "xs: List A" + shows "head xs: Maybe A" + unfolding head_def by typechk + +Lemma head_of_cons [comps]: + assumes "A: U i" "x: A" "xs: List A" + shows "head (x # xs) \<equiv> some x" + unfolding head_def ListCase_def by reduce + +Lemma tail_type [typechk]: + assumes "A: U i" "xs: List A" + shows "tail xs: List A" + unfolding tail_def by typechk + +Lemma tail_of_cons [comps]: + assumes "A: U i" "x: A" "xs: List A" + shows "tail (x # xs) \<equiv> xs" + unfolding tail_def ListCase_def by reduce + +subsection \<open>Append\<close> + +Lemma (derive) app: + assumes "A: U i" "xs: List A" "ys: List A" + shows "List A" + apply (elim xs) + \<guillemotright> by (fact \<open>ys:_\<close>) + \<guillemotright> prems vars x _ rec + proof - show "x # rec: List A" by typechk qed + done + +definition app_i ("app") where [implicit]: "app xs ys \<equiv> List.app ? xs ys" + +translations "app" \<leftharpoondown> "CONST List.app A" + +subsection \<open>Map\<close> + +Lemma (derive) map: + assumes "A: U i" "B: U i" "f: A \<rightarrow> B" "xs: List A" + shows "List B" +proof (elim xs) + show "[]: List B" by intro + next fix x ys + assume "x: A" "ys: List B" + show "f x # ys: List B" by typechk +qed + +definition map_i ("map") where [implicit]: "map \<equiv> List.map ? ?" + +translations "map" \<leftharpoondown> "CONST List.map A B" + +Lemma map_type [typechk]: + assumes "A: U i" "B: U i" "f: A \<rightarrow> B" "xs: List A" + shows "map f xs: List B" + unfolding map_def by typechk + + +subsection \<open>Reverse\<close> + +Lemma (derive) rev: + assumes "A: U i" "xs: List A" + shows "List A" + apply (elim xs) + \<guillemotright> by (rule List_nil) + \<guillemotright> prems vars x _ rec proof - show "app rec [x]: List A" by typechk qed + done + +definition rev_i ("rev") where [implicit]: "rev \<equiv> List.rev ?" + +translations "rev" \<leftharpoondown> "CONST List.rev A" + +Lemma rev_type [typechk]: + assumes "A: U i" "xs: List A" + shows "rev xs: List A" + unfolding rev_def by typechk + +Lemma rev_nil [comps]: + assumes "A: U i" + shows "rev (nil A) \<equiv> nil A" + unfolding rev_def by reduce + + +end diff --git a/spartan/lib/Maybe.thy b/spartan/lib/Maybe.thy new file mode 100644 index 0000000..1efbb95 --- /dev/null +++ b/spartan/lib/Maybe.thy @@ -0,0 +1,76 @@ +chapter \<open>Maybe type\<close> + +theory Maybe +imports More_Types + +begin + +text \<open>Defined as a sum.\<close> + +definition "Maybe A \<equiv> A \<or> \<top>" +definition "none A \<equiv> inr A \<top> tt" +definition "some A a \<equiv> inl A \<top> a" + +lemma + MaybeF: "A: U i \<Longrightarrow> Maybe A: U i" and + Maybe_none: "A: U i \<Longrightarrow> none A: Maybe A" and + Maybe_some: "a: A \<Longrightarrow> some A a: Maybe A" + unfolding Maybe_def none_def some_def by typechk+ + +Lemma (derive) MaybeInd: + assumes + "A: U i" + "\<And>m. m: Maybe A \<Longrightarrow> C m: U i" + "c\<^sub>0: C (none A)" + "\<And>a. a: A \<Longrightarrow> f a: C (some A a)" + "m: Maybe A" + shows "?MaybeInd A (\<lambda>m. C m) c\<^sub>0 (\<lambda>a. f a) m: C m" + supply assms[unfolded Maybe_def none_def some_def] + apply (elim m) + \<guillemotright> unfolding Maybe_def . + \<guillemotright> by (rule \<open>_ \<Longrightarrow> _: C (inl _ _ _)\<close>) + \<guillemotright> by elim (rule \<open>_: C (inr _ _ _)\<close>) + done + +Lemma Maybe_comp_none: + assumes + "A: U i" + "c\<^sub>0: C (none A)" + "\<And>a. a: A \<Longrightarrow> f a: C (some A a)" + "\<And>m. m: Maybe A \<Longrightarrow> C m: U i" + shows "MaybeInd A (\<lambda>m. C m) c\<^sub>0 (\<lambda>a. f a) (none A) \<equiv> c\<^sub>0" + supply assms[unfolded Maybe_def some_def none_def] + unfolding MaybeInd_def none_def by reduce + +Lemma Maybe_comp_some: + assumes + "A: U i" + "a: A" + "c\<^sub>0: C (none A)" + "\<And>a. a: A \<Longrightarrow> f a: C (some A a)" + "\<And>m. m: Maybe A \<Longrightarrow> C m: U i" + shows "MaybeInd A (\<lambda>m. C m) c\<^sub>0 (\<lambda>a. f a) (some A a) \<equiv> f a" + supply assms[unfolded Maybe_def some_def none_def] + unfolding MaybeInd_def some_def by (reduce add: Maybe_def) + +lemmas + [intros] = MaybeF Maybe_none Maybe_some and + [comps] = Maybe_comp_none Maybe_comp_some and + MaybeE [elims "?m"] = MaybeInd[rotated 4] +lemmas + Maybe_cases [cases] = MaybeE + +abbreviation "MaybeRec A C \<equiv> MaybeInd A (K C)" + +definition none_i ("none") + where [implicit]: "none \<equiv> Maybe.none ?" + +definition some_i ("some") + where [implicit]: "some a \<equiv> Maybe.some ? a" + +translations + "none" \<leftharpoondown> "CONST Maybe.none A" + "some a" \<leftharpoondown> "CONST Maybe.some A a" + + +end diff --git a/spartan/lib/More_Types.thy b/spartan/lib/More_Types.thy new file mode 100644 index 0000000..1d7abb9 --- /dev/null +++ b/spartan/lib/More_Types.thy @@ -0,0 +1,104 @@ +chapter \<open>Some standard types\<close> + +theory More_Types +imports Spartan + +begin + +section \<open>Sum type\<close> + +axiomatization + Sum :: \<open>o \<Rightarrow> o \<Rightarrow> o\<close> and + inl :: \<open>o \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> and + inr :: \<open>o \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> and + SumInd :: \<open>o \<Rightarrow> o \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> o\<close> + +notation Sum (infixl "\<or>" 50) + +axiomatization where + SumF: "\<lbrakk>A: U i; B: U i\<rbrakk> \<Longrightarrow> A \<or> B: U i" and + + Sum_inl: "\<lbrakk>a: A; B: U i\<rbrakk> \<Longrightarrow> inl A B a: A \<or> B" and + + Sum_inr: "\<lbrakk>b: B; A: U i\<rbrakk> \<Longrightarrow> inr A B b: A \<or> B" and + + SumE: "\<lbrakk> + s: A \<or> B; + \<And>s. s: A \<or> B \<Longrightarrow> C s: U i; + \<And>a. a: A \<Longrightarrow> c a: C (inl A B a); + \<And>b. b: B \<Longrightarrow> d b: C (inr A B b) + \<rbrakk> \<Longrightarrow> SumInd A B (\<lambda>s. C s) (\<lambda>a. c a) (\<lambda>b. d b) s: C s" and + + Sum_comp_inl: "\<lbrakk> + a: A; + \<And>s. s: A \<or> B \<Longrightarrow> C s: U i; + \<And>a. a: A \<Longrightarrow> c a: C (inl A B a); + \<And>b. b: B \<Longrightarrow> d b: C (inr A B b) + \<rbrakk> \<Longrightarrow> SumInd A B (\<lambda>s. C s) (\<lambda>a. c a) (\<lambda>b. d b) (inl A B a) \<equiv> c a" and + + Sum_comp_inr: "\<lbrakk> + b: B; + \<And>s. s: A \<or> B \<Longrightarrow> C s: U i; + \<And>a. a: A \<Longrightarrow> c a: C (inl A B a); + \<And>b. b: B \<Longrightarrow> d b: C (inr A B b) + \<rbrakk> \<Longrightarrow> SumInd A B (\<lambda>s. C s) (\<lambda>a. c a) (\<lambda>b. d b) (inr A B b) \<equiv> d b" + +lemmas + [intros] = SumF Sum_inl Sum_inr and + [elims ?s] = SumE and + [comps] = Sum_comp_inl Sum_comp_inr + +method left = rule Sum_inl +method right = rule Sum_inr + + +section \<open>Empty and unit types\<close> + +axiomatization + Top :: \<open>o\<close> and + tt :: \<open>o\<close> and + TopInd :: \<open>(o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> +and + Bot :: \<open>o\<close> and + BotInd :: \<open>(o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> o\<close> + +notation Top ("\<top>") and Bot ("\<bottom>") + +axiomatization where + TopF: "\<top>: U i" and + + TopI: "tt: \<top>" and + + TopE: "\<lbrakk>a: \<top>; \<And>x. x: \<top> \<Longrightarrow> C x: U i; c: C tt\<rbrakk> \<Longrightarrow> TopInd (\<lambda>x. C x) c a: C a" and + + Top_comp: "\<lbrakk>\<And>x. x: \<top> \<Longrightarrow> C x: U i; c: C tt\<rbrakk> \<Longrightarrow> TopInd (\<lambda>x. C x) c tt \<equiv> c" +and + BotF: "\<bottom>: U i" and + + BotE: "\<lbrakk>x: \<bottom>; \<And>x. x: \<bottom> \<Longrightarrow> C x: U i\<rbrakk> \<Longrightarrow> BotInd (\<lambda>x. C x) x: C x" + +lemmas + [intros] = TopF TopI BotF and + [elims ?a] = TopE and + [elims ?x] = BotE and + [comps] = Top_comp + + +section \<open>Booleans\<close> + +definition "Bool \<equiv> \<top> \<or> \<top>" +definition "true \<equiv> inl \<top> \<top> tt" +definition "false \<equiv> inr \<top> \<top> tt" + +Lemma + BoolF: "Bool: U i" and + Bool_true: "true: Bool" and + Bool_false: "false: Bool" + unfolding Bool_def true_def false_def by typechk+ + +lemmas [intros] = BoolF Bool_true Bool_false + +\<comment> \<open>Can define if-then-else etc.\<close> + + +end |