aboutsummaryrefslogtreecommitdiff
path: root/hott/Nat.thy
diff options
context:
space:
mode:
Diffstat (limited to 'hott/Nat.thy')
-rw-r--r--hott/Nat.thy6
1 files changed, 3 insertions, 3 deletions
diff --git a/hott/Nat.thy b/hott/Nat.thy
index d54ea7b..c36154e 100644
--- a/hott/Nat.thy
+++ b/hott/Nat.thy
@@ -44,7 +44,7 @@ lemmas
text \<open>Non-dependent recursion\<close>
-abbreviation "NatRec C \<equiv> NatInd (K C)"
+abbreviation "NatRec C \<equiv> NatInd (\<lambda>_. C)"
section \<open>Basic arithmetic\<close>
@@ -100,10 +100,10 @@ Lemma (derive) add_comm:
shows "m + n = n + m"
apply (elim m)
\<guillemotright> by (reduce; rule add_zero[symmetric])
- \<guillemotright> prems prms vars m ih
+ \<guillemotright> prems vars m ih
proof reduce
have "suc (m + n) = suc (n + m)" by (eq ih) intro
- also have "'' = n + suc m" by (rule add_suc[symmetric])
+ also have ".. = n + suc m" by (rule add_suc[symmetric])
finally show "suc (m + n) = n + suc m" by this
qed
done