aboutsummaryrefslogtreecommitdiff
path: root/ex/Methods.thy
diff options
context:
space:
mode:
Diffstat (limited to 'ex/Methods.thy')
-rw-r--r--ex/Methods.thy12
1 files changed, 6 insertions, 6 deletions
diff --git a/ex/Methods.thy b/ex/Methods.thy
index 415fbc3..c78af14 100644
--- a/ex/Methods.thy
+++ b/ex/Methods.thy
@@ -14,7 +14,7 @@ text "Wellformedness results, metatheorems written into the object theory using
lemma
assumes "A : U(i)" "B: A \<longrightarrow> U(i)" "\<And>x. x : A \<Longrightarrow> C x: B x \<longrightarrow> U(i)"
shows "\<Sum>x:A. \<Prod>y:B x. \<Sum>z:C x y. \<Prod>w:A. x =\<^sub>A w : U(i)"
-by (simple lems: assms)
+by (routine lems: assms)
lemma
@@ -38,7 +38,7 @@ text "Typechecking and constructing inhabitants:"
\<comment> \<open>Correctly determines the type of the pair\<close>
schematic_goal "\<lbrakk>A: U(i); B: U(i); a : A; b : B\<rbrakk> \<Longrightarrow> <a, b> : ?A"
-by simple
+by routine
\<comment> \<open>Finds pair (too easy).\<close>
schematic_goal "\<lbrakk>A: U(i); B: U(i); a : A; b : B\<rbrakk> \<Longrightarrow> ?x : A \<times> B"
@@ -56,19 +56,19 @@ lemma
assumes "A: U(i)" "a: A"
shows "(\<^bold>\<lambda>x. <x,0>)`a \<equiv> <a,0>"
proof compute
- show "\<And>x. x: A \<Longrightarrow> <x,0>: A \<times> \<nat>" by simple
-qed (simple lems: assms)
+ show "\<And>x. x: A \<Longrightarrow> <x,0>: A \<times> \<nat>" by routine
+qed (routine lems: assms)
lemma
assumes "A: U(i)" "B: A \<longrightarrow> U(i)" "a: A" "b: B(a)"
shows "(\<^bold>\<lambda>x y. <x,y>)`a`b \<equiv> <a,b>"
proof compute
- show "\<And>x. x: A \<Longrightarrow> \<^bold>\<lambda>y. <x,y>: \<Prod>y:B(x). \<Sum>x:A. B(x)" by (simple lems: assms)
+ show "\<And>x. x: A \<Longrightarrow> \<^bold>\<lambda>y. <x,y>: \<Prod>y:B(x). \<Sum>x:A. B(x)" by (routine lems: assms)
show "(\<^bold>\<lambda>b. <a,b>)`b \<equiv> <a, b>"
proof compute
- show "\<And>b. b: B(a) \<Longrightarrow> <a, b>: \<Sum>x:A. B(x)" by (simple lems: assms)
+ show "\<And>b. b: B(a) \<Longrightarrow> <a, b>: \<Sum>x:A. B(x)" by (routine lems: assms)
qed fact
qed fact