aboutsummaryrefslogtreecommitdiff
path: root/ex/HoTT book
diff options
context:
space:
mode:
Diffstat (limited to 'ex/HoTT book')
-rw-r--r--ex/HoTT book/Ch1.thy50
1 files changed, 0 insertions, 50 deletions
diff --git a/ex/HoTT book/Ch1.thy b/ex/HoTT book/Ch1.thy
deleted file mode 100644
index 263f43d..0000000
--- a/ex/HoTT book/Ch1.thy
+++ /dev/null
@@ -1,50 +0,0 @@
-(*
-Title: ex/HoTT book/Ch1.thy
-Author: Josh Chen
-Date: 2018
-
-A formalization of some content of Chapter 1 of the Homotopy Type Theory book.
-*)
-
-theory Ch1
-imports "../../HoTT"
-
-begin
-
-chapter \<open>HoTT Book, Chapter 1\<close>
-
-section \<open>1.6 Dependent pair types (\<Sum>-types)\<close>
-
-paragraph \<open>Propositional uniqueness principle.\<close>
-
-schematic_goal
- assumes "A: U i" and "B: A \<longrightarrow> U i" and "p: \<Sum>x:A. B x"
- shows "?a: p =[\<Sum>x:A. B x] <fst p, snd p>"
-
-text \<open>Proof by induction on @{term "p: \<Sum>x:A. B x"}:\<close>
-
-proof (rule Sum_elim[where ?p=p])
- text \<open>We prove the base case.\<close>
- fix x y assume asm: "x: A" "y: B x" show "refl <x,y>: <x,y> =[\<Sum>x:A. B x] <fst <x,y>, snd <x,y>>"
- proof compute
- show "x: A" and "y: B x" by (fact asm)+ \<comment> \<open>Hint the correct types.\<close>
-
- text \<open>And now @{method derive} takes care of the rest.
-\<close>
- qed (derive lems: assms asm)
-qed (derive lems: assms)
-
-
-section \<open>Exercises\<close>
-
-paragraph \<open>Exercise 1.13\<close>
-
-abbreviation "not" ("\<not>_") where "\<not>A \<equiv> A \<rightarrow> \<zero>"
-
-text "This proof requires the use of universe cumulativity."
-
-proposition assumes "A: U i" shows "\<^bold>\<lambda>f. f`(inr(\<^bold>\<lambda>a. f`(inl a))): \<not>(\<not>(A + \<not>A))"
-by (derive lems: assms)
-
-
-end