diff options
Diffstat (limited to 'Sum.thy')
-rw-r--r-- | Sum.thy | 49 |
1 files changed, 31 insertions, 18 deletions
@@ -15,6 +15,9 @@ axiomatization pair :: "[Term, Term] \<Rightarrow> Term" ("(1'(_,/ _'))") and indSum :: "[Term, Typefam, Typefam, [Term, Term] \<Rightarrow> Term, Term] \<Rightarrow> Term" ("(1indSum[_,/ _])") + +section \<open>Syntax\<close> + syntax "_SUM" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3\<Sum>_:_./ _)" 20) "_SUM_ASCII" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3SUM _:_./ _)" 20) @@ -23,30 +26,35 @@ translations "\<Sum>x:A. B" \<rightleftharpoons> "CONST Sum A (\<lambda>x. B)" "SUM x:A. B" \<rightharpoonup> "CONST Sum A (\<lambda>x. B)" + +section \<open>Type rules\<close> + axiomatization where - Sum_form [intro]: "\<And>A B. \<lbrakk>A : U; B: A \<rightarrow> U\<rbrakk> \<Longrightarrow> \<Sum>x:A. B x : U" + Sum_form: "\<And>A B. \<lbrakk>A : U; B: A \<rightarrow> U\<rbrakk> \<Longrightarrow> \<Sum>x:A. B x : U" and - Sum_intro [intro]: "\<And>A B a b. \<lbrakk>B: A \<rightarrow> U; a : A; b : B a\<rbrakk> \<Longrightarrow> (a,b) : \<Sum>x:A. B x" + Sum_intro: "\<And>A B a b. \<lbrakk>B: A \<rightarrow> U; a : A; b : B a\<rbrakk> \<Longrightarrow> (a,b) : \<Sum>x:A. B x" and - Sum_elim [elim]: "\<And>A B C f p. \<lbrakk> + Sum_elim: "\<And>A B C f p. \<lbrakk> C: \<Sum>x:A. B x \<rightarrow> U; \<And>x y. \<lbrakk>x : A; y : B x\<rbrakk> \<Longrightarrow> f x y : C (x,y); p : \<Sum>x:A. B x \<rbrakk> \<Longrightarrow> indSum[A,B] C f p : C p" and - Sum_comp [simp]: "\<And>A B C f a b. \<lbrakk> + Sum_comp: "\<And>A B C f a b. \<lbrakk> C: \<Sum>x:A. B x \<rightarrow> U; \<And>x y. \<lbrakk>x : A; y : B x\<rbrakk> \<Longrightarrow> f x y : C (x,y); a : A; b : B a \<rbrakk> \<Longrightarrow> indSum[A,B] C f (a,b) \<equiv> f a b" +lemmas Sum_rules [intro] = Sum_form Sum_intro Sum_elim Sum_comp + \<comment> \<open>Nondependent pair\<close> abbreviation Pair :: "[Term, Term] \<Rightarrow> Term" (infixr "\<times>" 50) where "A \<times> B \<equiv> \<Sum>_:A. B" -section \<open>Projections\<close> +section \<open>Projection functions\<close> consts fst :: "[Term, 'a] \<Rightarrow> Term" ("(1fst[/_,/ _])") @@ -74,23 +82,28 @@ begin "snd_nondep A B \<equiv> \<^bold>\<lambda>p: A \<times> B. indSum[A, \<lambda>_. B] (\<lambda>_. B) (\<lambda>x y. y) p" end -text "Properties of projections:" +text "Simplifying projections:" -lemma fst_dep_comp: +lemma fst_dep_comp: (* Potential for automation *) assumes "B: A \<rightarrow> U" and "a : A" and "b : B a" shows "fst[A,B]`(a,b) \<equiv> a" -proof (unfold fst_dep_def) (* GOOD AUTOMATION EXAMPLE *) - have "\<And>p. p : \<Sum>x:A. B x \<Longrightarrow> indSum[A, B] (\<lambda>_. A) (\<lambda>x y. x) p : A" .. - moreover have "(a, b) : \<Sum>x:A. B x" using assms .. - then have "fst[A,B]`(a,b) \<equiv> indSum[A, B] (\<lambda>_. A) (\<lambda>x y. x) (a,b)" unfolding fst_dep_def by (simp add: Prod_comp) - have "A : U" using assms(2) .. - then have "\<lambda>_. A: \<Sum>x:A. B x \<rightarrow> U" . - moreover have "\<And>x y. x : A \<Longrightarrow> (\<lambda>x y. x) x y : A" . - moreover - ultimately show "fst[A,B]`(a,b) \<equiv> a" unfolding fst_dep_def using assms by simp -qed +proof (unfold fst_dep_def) + \<comment> "Write about this proof: unfolding, how we set up the introduction rules (explain \<open>..\<close>), do a trace of the proof, explain the meaning of keywords, etc." -thm Sum_comp + have *: "A : U" using assms(2) .. (* I keep thinking this should not have to be done explicitly, but rather automated. *) + + then have "\<And>p. p : \<Sum>x:A. B x \<Longrightarrow> indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) p : A" .. + + moreover have "(a,b) : \<Sum>x:A. B x" using assms .. + + ultimately have "(\<^bold>\<lambda>p: (\<Sum>x:A. B x). indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) p)`(a,b) \<equiv> + indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) (a,b)" .. + + also have "indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) (a,b) \<equiv> a" + by (rule Sum_comp) (rule *, assumption, (rule assms)+) + + finally show "(\<^bold>\<lambda>p: (\<Sum>x:A. B x). indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) p)`(a,b) \<equiv> a" . +qed lemma snd_dep_comp: assumes "a : A" and "b : B a" |