diff options
-rw-r--r-- | HoTT_Methods.thy | 1 | ||||
-rw-r--r-- | Univalence.thy | 37 |
2 files changed, 21 insertions, 17 deletions
diff --git a/HoTT_Methods.thy b/HoTT_Methods.thy index ad7384d..27f252b 100644 --- a/HoTT_Methods.thy +++ b/HoTT_Methods.thy @@ -70,7 +70,6 @@ It also handles universes using @{method hierarchy} and @{method cumulativity}. method derive uses lems declares comp = (routine add: lems | compute add: lems comp: comp | cumulativity form: lems | hierarchy)+ - section \<open>Additional method combinators\<close> text \<open> diff --git a/Univalence.thy b/Univalence.thy index 42e452e..d4c0909 100644 --- a/Univalence.thy +++ b/Univalence.thy @@ -163,34 +163,39 @@ prefer 2 prefer 9 apply (rule Sum_routine) prefer 3 apply (rule transport_invr_hom) -\<comment> \<open>The remaining subgoals can now be handled relatively easily.\<close> -proof - - show *: "U i: U (Suc i)" by derive +proof - \<comment> \<open>The remaining subgoals can now be handled relatively easily.\<close> + show "U i: U (Suc i)" by derive show "U i: U (Suc i)" by fact - - fix g assume [intro]: "g: (id U i)`B \<rightarrow> (id U i)`A" - - have - "transport (id U i) A B p o[(id U i)`B] g: (id U i)`B \<rightarrow> (id U i)`B" + + have "\<And>g. g: (id U i)`B \<rightarrow> (id U i)`A \<Longrightarrow> + transport (id U i) A B p o[(id U i)`B] g: (id U i)`B \<rightarrow> (id U i)`B" proof show "(id U i)`A: U i" by derive qed derive - moreover have - "transport[id U i, A, B] p o[(id U i)`B] g ~[x: (id U i)`B. (id U i)`B] id (id U i)`B: U i" + have "\<And>g. g: (id U i)`B \<rightarrow> (id U i)`A \<Longrightarrow> + transport[id U i, A, B] p o[(id U i)`B] g ~[x: (id U i)`B. (id U i)`B] id (id U i)`B: U i" apply rule prefer 3 apply (fact, derive) done - then show - "(transport[id U i, A, B] p) o[(id U i)`B] g ~[x: (id U i)`B. (id U i)`B] id (id U i)`B: U i" + then show "\<And>g. g: (id U i)`B \<rightarrow> (id U i)`A \<Longrightarrow> + transport[id U i, A, B] p o[(id U i)`B] g ~[x: (id U i)`B. (id U i)`B] id (id U i)`B: U i" by routine + show "\<Sum>g: (id U i)`B \<rightarrow> (id U i)`A. + transport[id U i, A, B] p o[(id U i)`B] g ~[x: (id U i)`B. (id U i)`B] id (id U i)`B: U i" + proof + show "\<And>g. g : (id U i)`B \<rightarrow> (id U i)`A \<Longrightarrow> + Eq.transport (id U i) A B p o[(id U i)`B] g ~[x: (id U i)`B. (id U i)`B] id (id U i)`B: U i" + by fact + qed derive + + fix g assume [intro]: "g: (id U i)`B \<rightarrow> (id U i)`A" have "g o[(id U i)`A] transport (id U i) A B p: (id U i)`A \<rightarrow> (id U i)`A" proof show "(id U i)`B: U i" by derive qed derive - moreover have + have "g o[(id U i)`A] transport (id U i) A B p ~[x: (id U i)`A. (id U i)`A] id (id U i)`A: U i" apply rule prefer 3 apply (fact, derive) done then show "g o[(id U i)`A] transport (id U i) A B p ~[x: (id U i)`A. (id U i)`A] id (id U i)`A: U i" by routine - -qed +qed derive section \<open>Univalence\<close> @@ -209,7 +214,7 @@ proof - moreover have [intro]: "(id U i)`A \<rightarrow> (id U i)`B \<equiv> A \<rightarrow> B" by derive ultimately show "transport (id U i) A B p: A \<rightarrow> B" by simp -qed deriv +qed derive (* section \<open>The univalence axiom\<close> |