aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--HoTT_Methods.thy1
-rw-r--r--Univalence.thy37
2 files changed, 21 insertions, 17 deletions
diff --git a/HoTT_Methods.thy b/HoTT_Methods.thy
index ad7384d..27f252b 100644
--- a/HoTT_Methods.thy
+++ b/HoTT_Methods.thy
@@ -70,7 +70,6 @@ It also handles universes using @{method hierarchy} and @{method cumulativity}.
method derive uses lems declares comp =
(routine add: lems | compute add: lems comp: comp | cumulativity form: lems | hierarchy)+
-
section \<open>Additional method combinators\<close>
text \<open>
diff --git a/Univalence.thy b/Univalence.thy
index 42e452e..d4c0909 100644
--- a/Univalence.thy
+++ b/Univalence.thy
@@ -163,34 +163,39 @@ prefer 2
prefer 9
apply (rule Sum_routine)
prefer 3 apply (rule transport_invr_hom)
-\<comment> \<open>The remaining subgoals can now be handled relatively easily.\<close>
-proof -
- show *: "U i: U (Suc i)" by derive
+proof - \<comment> \<open>The remaining subgoals can now be handled relatively easily.\<close>
+ show "U i: U (Suc i)" by derive
show "U i: U (Suc i)" by fact
-
- fix g assume [intro]: "g: (id U i)`B \<rightarrow> (id U i)`A"
-
- have
- "transport (id U i) A B p o[(id U i)`B] g: (id U i)`B \<rightarrow> (id U i)`B"
+
+ have "\<And>g. g: (id U i)`B \<rightarrow> (id U i)`A \<Longrightarrow>
+ transport (id U i) A B p o[(id U i)`B] g: (id U i)`B \<rightarrow> (id U i)`B"
proof show "(id U i)`A: U i" by derive qed derive
- moreover have
- "transport[id U i, A, B] p o[(id U i)`B] g ~[x: (id U i)`B. (id U i)`B] id (id U i)`B: U i"
+ have "\<And>g. g: (id U i)`B \<rightarrow> (id U i)`A \<Longrightarrow>
+ transport[id U i, A, B] p o[(id U i)`B] g ~[x: (id U i)`B. (id U i)`B] id (id U i)`B: U i"
apply rule prefer 3 apply (fact, derive) done
- then show
- "(transport[id U i, A, B] p) o[(id U i)`B] g ~[x: (id U i)`B. (id U i)`B] id (id U i)`B: U i"
+ then show "\<And>g. g: (id U i)`B \<rightarrow> (id U i)`A \<Longrightarrow>
+ transport[id U i, A, B] p o[(id U i)`B] g ~[x: (id U i)`B. (id U i)`B] id (id U i)`B: U i"
by routine
+ show "\<Sum>g: (id U i)`B \<rightarrow> (id U i)`A.
+ transport[id U i, A, B] p o[(id U i)`B] g ~[x: (id U i)`B. (id U i)`B] id (id U i)`B: U i"
+ proof
+ show "\<And>g. g : (id U i)`B \<rightarrow> (id U i)`A \<Longrightarrow>
+ Eq.transport (id U i) A B p o[(id U i)`B] g ~[x: (id U i)`B. (id U i)`B] id (id U i)`B: U i"
+ by fact
+ qed derive
+
+ fix g assume [intro]: "g: (id U i)`B \<rightarrow> (id U i)`A"
have
"g o[(id U i)`A] transport (id U i) A B p: (id U i)`A \<rightarrow> (id U i)`A"
proof show "(id U i)`B: U i" by derive qed derive
- moreover have
+ have
"g o[(id U i)`A] transport (id U i) A B p ~[x: (id U i)`A. (id U i)`A] id (id U i)`A: U i"
apply rule prefer 3 apply (fact, derive) done
then show
"g o[(id U i)`A] transport (id U i) A B p ~[x: (id U i)`A. (id U i)`A] id (id U i)`A: U i"
by routine
-
-qed
+qed derive
section \<open>Univalence\<close>
@@ -209,7 +214,7 @@ proof -
moreover have [intro]:
"(id U i)`A \<rightarrow> (id U i)`B \<equiv> A \<rightarrow> B" by derive
ultimately show "transport (id U i) A B p: A \<rightarrow> B" by simp
-qed deriv
+qed derive
(*
section \<open>The univalence axiom\<close>