diff options
-rw-r--r-- | EqualProps.thy | 89 | ||||
-rw-r--r-- | HoTT_Base.thy | 11 |
2 files changed, 73 insertions, 27 deletions
diff --git a/EqualProps.thy b/EqualProps.thy index f7a8d91..847d964 100644 --- a/EqualProps.thy +++ b/EqualProps.thy @@ -22,6 +22,10 @@ unfolding inv_def by (elim Equal_elim) routine lemma inv_comp: "\<lbrakk>A: U i; a: A\<rbrakk> \<Longrightarrow> (refl a)\<inverse> \<equiv> refl a" unfolding inv_def by compute routine +declare + inv_type [intro] + inv_comp [comp] + section \<open>Transitivity of equality/Path composition\<close> @@ -35,7 +39,7 @@ syntax "_pathcomp" :: "[t, t] \<Rightarrow> t" (infixl "\<bullet>" 120) translations "p \<bullet> q" \<rightleftharpoons> "CONST pathcomp`p`q" lemma pathcomp_type: - assumes "A: U i" and "x: A" "y: A" "z: A" + assumes "A: U i" "x: A" "y: A" "z: A" shows "pathcomp: x =\<^sub>A y \<rightarrow> (y =\<^sub>A z) \<rightarrow> (x =\<^sub>A z)" unfolding pathcomp_def by rule (elim Equal_elim, routine add: assms) @@ -63,6 +67,11 @@ unfolding pathcomp_def proof compute by (routine add: assms) qed (routine add: assms) +declare + pathcomp_type [intro] + pathcomp_trans [intro] + pathcomp_comp [comp] + section \<open>Higher groupoid structure of types\<close> @@ -71,54 +80,86 @@ schematic_goal pathcomp_right_id: shows "?a: p \<bullet> (refl y) =[x =\<^sub>A y] p" proof (rule Equal_elim[where ?x=x and ?y=y and ?p=p]) \<comment> \<open>@{method elim} does not seem to work with schematic goals.\<close> show "\<And>x. x: A \<Longrightarrow> refl(refl x): (refl x) \<bullet> (refl x) =[x =\<^sub>A x] (refl x)" - by (derive lems: assms pathcomp_comp) -qed (routine add: assms pathcomp_type) + by (derive lems: assms) +qed (routine add: assms) schematic_goal pathcomp_left_id: assumes "A: U(i)" "x: A" "y: A" "p: x =\<^sub>A y" shows "?a: (refl x) \<bullet> p =[x =\<^sub>A y] p" proof (rule Equal_elim[where ?x=x and ?y=y and ?p=p]) show "\<And>x. x: A \<Longrightarrow> refl(refl x): (refl x) \<bullet> (refl x) =[x =\<^sub>A x] (refl x)" - by (derive lems: assms pathcomp_comp) -qed (routine add: assms pathcomp_type) + by (derive lems: assms) +qed (routine add: assms) schematic_goal pathcomp_left_inv: assumes "A: U(i)" "x: A" "y: A" "p: x =\<^sub>A y" shows "?a: (p\<inverse> \<bullet> p) =[y =\<^sub>A y] refl(y)" proof (rule Equal_elim[where ?x=x and ?y=y and ?p=p]) show "\<And>x. x: A \<Longrightarrow> refl(refl x): (refl x)\<inverse> \<bullet> (refl x) =[x =\<^sub>A x] (refl x)" - by (derive lems: assms inv_comp pathcomp_comp) -qed (routine add: assms inv_type pathcomp_type) + by (derive lems: assms) +qed (routine add: assms) schematic_goal pathcomp_right_inv: assumes "A: U(i)" "x: A" "y: A" "p: x =\<^sub>A y" shows "?a: (p \<bullet> p\<inverse>) =[x =\<^sub>A x] refl(x)" proof (rule Equal_elim[where ?x=x and ?y=y and ?p=p]) show "\<And>x. x: A \<Longrightarrow> refl(refl x): (refl x) \<bullet> (refl x)\<inverse> =[x =\<^sub>A x] (refl x)" - by (derive lems: assms inv_comp pathcomp_comp) -qed (routine add: assms inv_type pathcomp_type) + by (derive lems: assms) +qed (routine add: assms) schematic_goal inv_involutive: assumes "A: U(i)" "x: A" "y: A" "p: x =\<^sub>A y" shows "?a: p\<inverse>\<inverse> =[x =\<^sub>A y] p" proof (rule Equal_elim[where ?x=x and ?y=y and ?p=p]) show "\<And>x. x: A \<Longrightarrow> refl(refl x): (refl x)\<inverse>\<inverse> =[x =\<^sub>A x] (refl x)" - by (derive lems: assms inv_comp) -qed (routine add: assms inv_type) - -schematic_goal pathcomp_assoc: - assumes - "A: U(i)" - "x: A" "y: A" "z: A" "w: A" - "p: x =\<^sub>A y" "q: y =\<^sub>A z" "r: z =\<^sub>A w" - shows - "?a: p \<bullet> (q \<bullet> r) =[x =\<^sub>A w] (p \<bullet> q) \<bullet> r" -proof (rule Equal_elim[where ?x=x and ?y=y and ?p=p]) - fix x assume "x: A" - show "refl (q \<bullet> r): (refl x) \<bullet> (q \<bullet> r) =[x =\<^sub>A w] ((refl x) \<bullet> q) \<bullet> r" - \<comment> \<open>This requires substitution of *propositional* equality. \<close> - oops + by (derive lems: assms) +qed (routine add: assms) +text \<open>All of the propositions above have the same proof term, which we abbreviate here.\<close> +abbreviation \<iota> :: "t \<Rightarrow> t" where "\<iota> p \<equiv> ind\<^sub>= (\<lambda>x. refl (refl x)) p" + +text \<open>The next proof has a triply-nested path induction.\<close> + +lemma pathcomp_assoc: + assumes "A: U i" "x: A" "y: A" "z: A" "w: A" + shows "\<^bold>\<lambda>p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>q. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>r. \<iota> r) q) p: + \<Prod>p: x =\<^sub>A y. \<Prod>q: y =\<^sub>A z. \<Prod>r: z =\<^sub>A w. p \<bullet> (q \<bullet> r) =[x =\<^sub>A w] (p \<bullet> q) \<bullet> r" +proof + show "\<And>p. p: x =\<^sub>A y \<Longrightarrow> ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>q. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>r. \<iota> r) q) p: + \<Prod>q: y =\<^sub>A z. \<Prod>r: z =\<^sub>A w. p \<bullet> (q \<bullet> r) =[x =\<^sub>A w] p \<bullet> q \<bullet> r" + proof (elim Equal_elim) + fix x assume 1: "x: A" + show "\<^bold>\<lambda>q. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>r. \<iota> r) q: + \<Prod>q: x =\<^sub>A z. \<Prod>r: z =\<^sub>A w. refl x \<bullet> (q \<bullet> r) =[x =\<^sub>A w] refl x \<bullet> q \<bullet> r" + proof + show "\<And>q. q: x =\<^sub>A z \<Longrightarrow> ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>r. \<iota> r) q: + \<Prod>r: z =\<^sub>A w. refl x \<bullet> (q \<bullet> r) =[x =\<^sub>A w] refl x \<bullet> q \<bullet> r" + proof (elim Equal_elim) + fix x assume *: "x: A" + show "\<^bold>\<lambda>r. \<iota> r: \<Prod>r: x =\<^sub>A w. refl x \<bullet> (refl x \<bullet> r) =[x =\<^sub>A w] refl x \<bullet> refl x \<bullet> r" + proof + show "\<And>r. r: x =[A] w \<Longrightarrow> \<iota> r: refl x \<bullet> (refl x \<bullet> r) =[x =[A] w] refl x \<bullet> refl x \<bullet> r" + by (elim Equal_elim, derive lems: * assms) + qed (routine add: * assms) + qed (routine add: 1 assms) + qed (routine add: 1 assms) + + text \<open> + In the following part @{method derive} fails to obtain the correct subgoals, so we have to prove the statement manually. + \<close> + fix y p assume 2: "y: A" "p: x =\<^sub>A y" + show "\<Prod>q: y =\<^sub>A z. \<Prod>r: z =\<^sub>A w. p \<bullet> (q \<bullet> r) =[x =\<^sub>A w] p \<bullet> q \<bullet> r: U i" + proof (routine add: assms) + fix q assume 3: "q: y =\<^sub>A z" + show "\<Prod>r: z =\<^sub>A w. p \<bullet> (q \<bullet> r) =[x =\<^sub>A w] p \<bullet> q \<bullet> r: U i" + proof (routine add: assms) + show "\<And>r. r: z =[A] w \<Longrightarrow> p \<bullet> (q \<bullet> r): x =[A] w" and "\<And>r. r: z =[A] w \<Longrightarrow> p \<bullet> q \<bullet> r: x =[A] w" + by (routine add: 1 2 3 assms) + qed (routine add: 1 assms) + qed fact+ + qed fact+ +qed (routine add: assms) + section \<open>Transport\<close> diff --git a/HoTT_Base.thy b/HoTT_Base.thy index 69cc1b1..0b460d9 100644 --- a/HoTT_Base.thy +++ b/HoTT_Base.thy @@ -25,9 +25,14 @@ axiomatization lt :: "[ord, ord] \<Rightarrow> prop" (infix "<" 999) and leq :: "[ord, ord] \<Rightarrow> prop" (infix "\<le>" 999) where - lt_Suc [intro]: "n < (Suc n)" and - lt_trans [intro]: "\<lbrakk>m1 < m2; m2 < m3\<rbrakk> \<Longrightarrow> m1 < m3" and - leq_min [intro]: "O \<le> n" + lt_Suc: "n < (Suc n)" and + lt_trans: "\<lbrakk>m1 < m2; m2 < m3\<rbrakk> \<Longrightarrow> m1 < m3" and + leq_min: "O \<le> n" + +declare + lt_Suc [intro!] + leq_min [intro!] + lt_trans [intro] section \<open>Judgment\<close> |