aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--HoTT.thy68
-rw-r--r--HoTT_Theorems.thy2
2 files changed, 42 insertions, 28 deletions
diff --git a/HoTT.thy b/HoTT.thy
index cf8b157..68de364 100644
--- a/HoTT.thy
+++ b/HoTT.thy
@@ -3,11 +3,9 @@ theory HoTT
begin
section \<open>Setup\<close>
-
text "For ML files, routines and setup."
section \<open>Basic definitions\<close>
-
text "A single meta-level type \<open>Term\<close> suffices to implement the object-level types and terms.
We do not implement universes, but simply follow the informal notation in the HoTT book."
@@ -20,14 +18,12 @@ consts
is_of_type :: "[Term, Term] \<Rightarrow> prop" ("(3_ :/ _)" [0, 0] 1000)
subsection \<open>Type families\<close>
-
text "Type families are implemented using meta-level lambda expressions \<open>P::Term \<Rightarrow> Term\<close> that further satisfy the following property."
abbreviation is_type_family :: "[Term \<Rightarrow> Term, Term] \<Rightarrow> prop" ("(3_:/ _ \<rightarrow> U)")
where "P: A \<rightarrow> U \<equiv> (\<And>x::Term. x : A \<Longrightarrow> P(x) : U)"
subsection \<open>Definitional equality\<close>
-
text "We take the meta-equality \<open>\<equiv>\<close>, defined by the Pure framework for any of its terms, and use it additionally for definitional/judgmental equality of types and terms in our theory.
Note that the Pure framework already provides axioms and results for various properties of \<open>\<equiv>\<close>, which we make use of and extend where necessary."
@@ -71,15 +67,12 @@ where
Prod_elim [elim]: "\<And>(A::Term) (B::Term \<Rightarrow> Term) (f::Term) (a::Term).
\<lbrakk>f : \<Prod>x:A. B(x); a : A\<rbrakk> \<Longrightarrow> f`a : B(a)" and
- Prod_comp: "\<And>(A::Term) (b::Term \<Rightarrow> Term) (a::Term). a : A \<Longrightarrow> (\<^bold>\<lambda>x:A. b(x))`a \<equiv> b(a)" and
+ Prod_comp [simp]: "\<And>(A::Term) (b::Term \<Rightarrow> Term) (a::Term). a : A \<Longrightarrow> (\<^bold>\<lambda>x:A. b(x))`a \<equiv> b(a)" and
- Prod_uniq: "\<And>(A::Term) (f::Term). \<^bold>\<lambda>x:A. (f`x) \<equiv> f"
+ Prod_uniq [simp]: "\<And>(A::Term) (f::Term). \<^bold>\<lambda>x:A. (f`x) \<equiv> f"
lemmas Prod_formation = Prod_form Prod_form[rotated]
-\<comment> \<open>Simplification rules for Prod\<close>
-lemmas Prod_simp [simp] = Prod_comp Prod_uniq
-
text "Note that the syntax \<open>\<^bold>\<lambda>\<close> (bold lambda) used for dependent functions clashes with the proof term syntax (cf. \<section>2.5.2 of the Isabelle/Isar Implementation)."
subsubsection \<open>Dependent pair/sum\<close>
@@ -106,30 +99,56 @@ where
Sum_elim [elim]: "\<And>(A::Term) (B::Term \<Rightarrow> Term) (C::Term \<Rightarrow> Term) (f::Term) (p::Term).
\<lbrakk>C: \<Sum>x:A. B(x) \<rightarrow> U; f : \<Prod>x:A. \<Prod>y:B(x). C((x,y)); p : \<Sum>x:A. B(x)\<rbrakk> \<Longrightarrow> (indSum C)`f`p : C(p)" and
- Sum_comp: "\<And>(C::Term \<Rightarrow> Term) (f::Term) (a::Term) (b::Term). (* ADD CONSTRAINTS HERE *)
- (indSum C)`f`(a,b) \<equiv> f`a`b"
+ Sum_comp [simp]: "\<And>(C::Term \<Rightarrow> Term) (f::Term) (a::Term) (b::Term). (indSum C)`f`(a,b) \<equiv> f`a`b"
lemmas Sum_formation = Sum_form Sum_form[rotated]
text "We choose to formulate the elimination rule by using the object-level function type and function application as much as possible.
Hence only the type family \<open>C\<close> is left as a meta-level argument to the inductor indSum."
-\<comment> \<open>Projection functions\<close>
+text "Projection functions"
-definition fst :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term" ("(1fst[/_,/ _])")
- where "fst[A, B] \<equiv> (indSum (\<lambda>_. A))`(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). x)"
+consts
+ fst :: "[Term, 'a] \<Rightarrow> Term" ("(1fst[/_,/ _])")
+ snd :: "[Term, 'a] \<Rightarrow> Term" ("(1snd[/_,/ _])")
+overloading
+ fst_dep \<equiv> fst
+ snd_dep \<equiv> snd
+ fst_nondep \<equiv> fst
+ snd_nondep \<equiv> snd
+begin
+definition fst_dep :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term" where
+ "fst_dep A B \<equiv> (indSum (\<lambda>_. A))`(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). x)"
-definition snd :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term" ("(1snd[/_,/ _])")
- where "snd[A, B] \<equiv> (indSum (\<lambda>_. A))`(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). y)"
+definition snd_dep :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term" where
+ "snd_dep A B \<equiv> (indSum (\<lambda>_. A))`(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). y)"
-lemma fst_comp: "\<lbrakk>a : A; b : B(a)\<rbrakk> \<Longrightarrow> fst[A,B]`(a,b) \<equiv> a" unfolding fst_def by (simp add: Sum_comp)
-lemma snd_comp: "\<lbrakk>a : A; b : B(a)\<rbrakk> \<Longrightarrow> snd[A,B]`(a,b) \<equiv> b" unfolding snd_def by (simp add: Sum_comp)
+definition fst_nondep :: "[Term, Term] \<Rightarrow> Term" where
+ "fst_nondep A B \<equiv> (indSum (\<lambda>_. A))`(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B. x)"
+
+definition snd_nondep :: "[Term, Term] \<Rightarrow> Term" where
+ "snd_nondep A B \<equiv> (indSum (\<lambda>_. A))`(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B. y)"
+end
+
+lemma fst_dep_comp: "\<lbrakk>a : A; b : B(a)\<rbrakk> \<Longrightarrow> fst[A,B]`(a,b) \<equiv> a" unfolding fst_dep_def by simp
+lemma snd_dep_comp: "\<lbrakk>a : A; b : B(a)\<rbrakk> \<Longrightarrow> snd[A,B]`(a,b) \<equiv> b" unfolding snd_dep_def by simp
+
+lemma fst_nondep_comp: "\<lbrakk>a : A; b : B\<rbrakk> \<Longrightarrow> fst[A,B]`(a,b) \<equiv> a" unfolding fst_nondep_def by simp
+lemma snd_nondep_comp: "\<lbrakk>a : A; b : B\<rbrakk> \<Longrightarrow> snd[A,B]`(a,b) \<equiv> b" unfolding snd_nondep_def by simp
\<comment> \<open>Simplification rules for Sum\<close>
-lemmas Sum_simp [simp] = Sum_comp fst_comp snd_comp
+lemmas fst_snd_simps [simp] = fst_dep_comp snd_dep_comp fst_nondep_comp snd_nondep_comp
-lemma "\<lbrakk>a : A; b : B(a)\<rbrakk> \<Longrightarrow> fst[A,B]`(a,b) : A" by simp
+subsubsection \<open>Equality type\<close>
+
+axiomatization
+ Equal :: "Term \<Rightarrow> Term \<Rightarrow> Term \<Rightarrow> Term" ("(_ =_ _)") and
+ refl :: "Term \<Rightarrow> Term" ("(refl'(_'))")
+where
+ Equal_form: "\<And>A a b. \<lbrakk>a : A; b : A\<rbrakk> \<Longrightarrow> a =A b : U" and
+ Equal_intro: "\<And>A x. x : A \<Longrightarrow> refl x : x =A x"
+(*
subsubsection \<open>Empty type\<close>
axiomatization
@@ -152,13 +171,6 @@ where
Nat_intro2: "\<And>n. n : Nat \<Longrightarrow> succ n : Nat"
(* computation rules *)
-subsubsection \<open>Equality type\<close>
-
-axiomatization
- Equal :: "Term \<Rightarrow> Term \<Rightarrow> Term \<Rightarrow> Term" ("(_ =_ _)") and
- refl :: "Term \<Rightarrow> Term" ("(refl'(_'))")
-where
- Equal_form: "\<And>A a b. \<lbrakk>a : A; b : A\<rbrakk> \<Longrightarrow> a =A b : U" and
- Equal_intro: "\<And>A x. x : A \<Longrightarrow> refl x : x =A x"
+*)
end \ No newline at end of file
diff --git a/HoTT_Theorems.thy b/HoTT_Theorems.thy
index aeddf9f..a44c8f9 100644
--- a/HoTT_Theorems.thy
+++ b/HoTT_Theorems.thy
@@ -41,6 +41,8 @@ proposition "a : A \<Longrightarrow> (\<^bold>\<lambda>x:A. x)`a \<equiv> a" by
text "Currying:"
+lemma "\<lbrakk>a : A; b : B\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B. y)`a`b \<equiv> b" by simp
+
lemma "a : A \<Longrightarrow> (\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). f x y)`a \<equiv> \<^bold>\<lambda>y:B(a). f a y" by simp
lemma "\<lbrakk>a : A; b : B(a); c : C(a)(b)\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). \<^bold>\<lambda>z:C(x)(y). f x y z)`a`b`c \<equiv> f a b c" by simp