diff options
-rw-r--r-- | HoTT.thy | 68 | ||||
-rw-r--r-- | HoTT_Theorems.thy | 2 |
2 files changed, 42 insertions, 28 deletions
@@ -3,11 +3,9 @@ theory HoTT begin section \<open>Setup\<close> - text "For ML files, routines and setup." section \<open>Basic definitions\<close> - text "A single meta-level type \<open>Term\<close> suffices to implement the object-level types and terms. We do not implement universes, but simply follow the informal notation in the HoTT book." @@ -20,14 +18,12 @@ consts is_of_type :: "[Term, Term] \<Rightarrow> prop" ("(3_ :/ _)" [0, 0] 1000) subsection \<open>Type families\<close> - text "Type families are implemented using meta-level lambda expressions \<open>P::Term \<Rightarrow> Term\<close> that further satisfy the following property." abbreviation is_type_family :: "[Term \<Rightarrow> Term, Term] \<Rightarrow> prop" ("(3_:/ _ \<rightarrow> U)") where "P: A \<rightarrow> U \<equiv> (\<And>x::Term. x : A \<Longrightarrow> P(x) : U)" subsection \<open>Definitional equality\<close> - text "We take the meta-equality \<open>\<equiv>\<close>, defined by the Pure framework for any of its terms, and use it additionally for definitional/judgmental equality of types and terms in our theory. Note that the Pure framework already provides axioms and results for various properties of \<open>\<equiv>\<close>, which we make use of and extend where necessary." @@ -71,15 +67,12 @@ where Prod_elim [elim]: "\<And>(A::Term) (B::Term \<Rightarrow> Term) (f::Term) (a::Term). \<lbrakk>f : \<Prod>x:A. B(x); a : A\<rbrakk> \<Longrightarrow> f`a : B(a)" and - Prod_comp: "\<And>(A::Term) (b::Term \<Rightarrow> Term) (a::Term). a : A \<Longrightarrow> (\<^bold>\<lambda>x:A. b(x))`a \<equiv> b(a)" and + Prod_comp [simp]: "\<And>(A::Term) (b::Term \<Rightarrow> Term) (a::Term). a : A \<Longrightarrow> (\<^bold>\<lambda>x:A. b(x))`a \<equiv> b(a)" and - Prod_uniq: "\<And>(A::Term) (f::Term). \<^bold>\<lambda>x:A. (f`x) \<equiv> f" + Prod_uniq [simp]: "\<And>(A::Term) (f::Term). \<^bold>\<lambda>x:A. (f`x) \<equiv> f" lemmas Prod_formation = Prod_form Prod_form[rotated] -\<comment> \<open>Simplification rules for Prod\<close> -lemmas Prod_simp [simp] = Prod_comp Prod_uniq - text "Note that the syntax \<open>\<^bold>\<lambda>\<close> (bold lambda) used for dependent functions clashes with the proof term syntax (cf. \<section>2.5.2 of the Isabelle/Isar Implementation)." subsubsection \<open>Dependent pair/sum\<close> @@ -106,30 +99,56 @@ where Sum_elim [elim]: "\<And>(A::Term) (B::Term \<Rightarrow> Term) (C::Term \<Rightarrow> Term) (f::Term) (p::Term). \<lbrakk>C: \<Sum>x:A. B(x) \<rightarrow> U; f : \<Prod>x:A. \<Prod>y:B(x). C((x,y)); p : \<Sum>x:A. B(x)\<rbrakk> \<Longrightarrow> (indSum C)`f`p : C(p)" and - Sum_comp: "\<And>(C::Term \<Rightarrow> Term) (f::Term) (a::Term) (b::Term). (* ADD CONSTRAINTS HERE *) - (indSum C)`f`(a,b) \<equiv> f`a`b" + Sum_comp [simp]: "\<And>(C::Term \<Rightarrow> Term) (f::Term) (a::Term) (b::Term). (indSum C)`f`(a,b) \<equiv> f`a`b" lemmas Sum_formation = Sum_form Sum_form[rotated] text "We choose to formulate the elimination rule by using the object-level function type and function application as much as possible. Hence only the type family \<open>C\<close> is left as a meta-level argument to the inductor indSum." -\<comment> \<open>Projection functions\<close> +text "Projection functions" -definition fst :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term" ("(1fst[/_,/ _])") - where "fst[A, B] \<equiv> (indSum (\<lambda>_. A))`(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). x)" +consts + fst :: "[Term, 'a] \<Rightarrow> Term" ("(1fst[/_,/ _])") + snd :: "[Term, 'a] \<Rightarrow> Term" ("(1snd[/_,/ _])") +overloading + fst_dep \<equiv> fst + snd_dep \<equiv> snd + fst_nondep \<equiv> fst + snd_nondep \<equiv> snd +begin +definition fst_dep :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term" where + "fst_dep A B \<equiv> (indSum (\<lambda>_. A))`(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). x)" -definition snd :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term" ("(1snd[/_,/ _])") - where "snd[A, B] \<equiv> (indSum (\<lambda>_. A))`(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). y)" +definition snd_dep :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term" where + "snd_dep A B \<equiv> (indSum (\<lambda>_. A))`(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). y)" -lemma fst_comp: "\<lbrakk>a : A; b : B(a)\<rbrakk> \<Longrightarrow> fst[A,B]`(a,b) \<equiv> a" unfolding fst_def by (simp add: Sum_comp) -lemma snd_comp: "\<lbrakk>a : A; b : B(a)\<rbrakk> \<Longrightarrow> snd[A,B]`(a,b) \<equiv> b" unfolding snd_def by (simp add: Sum_comp) +definition fst_nondep :: "[Term, Term] \<Rightarrow> Term" where + "fst_nondep A B \<equiv> (indSum (\<lambda>_. A))`(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B. x)" + +definition snd_nondep :: "[Term, Term] \<Rightarrow> Term" where + "snd_nondep A B \<equiv> (indSum (\<lambda>_. A))`(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B. y)" +end + +lemma fst_dep_comp: "\<lbrakk>a : A; b : B(a)\<rbrakk> \<Longrightarrow> fst[A,B]`(a,b) \<equiv> a" unfolding fst_dep_def by simp +lemma snd_dep_comp: "\<lbrakk>a : A; b : B(a)\<rbrakk> \<Longrightarrow> snd[A,B]`(a,b) \<equiv> b" unfolding snd_dep_def by simp + +lemma fst_nondep_comp: "\<lbrakk>a : A; b : B\<rbrakk> \<Longrightarrow> fst[A,B]`(a,b) \<equiv> a" unfolding fst_nondep_def by simp +lemma snd_nondep_comp: "\<lbrakk>a : A; b : B\<rbrakk> \<Longrightarrow> snd[A,B]`(a,b) \<equiv> b" unfolding snd_nondep_def by simp \<comment> \<open>Simplification rules for Sum\<close> -lemmas Sum_simp [simp] = Sum_comp fst_comp snd_comp +lemmas fst_snd_simps [simp] = fst_dep_comp snd_dep_comp fst_nondep_comp snd_nondep_comp -lemma "\<lbrakk>a : A; b : B(a)\<rbrakk> \<Longrightarrow> fst[A,B]`(a,b) : A" by simp +subsubsection \<open>Equality type\<close> + +axiomatization + Equal :: "Term \<Rightarrow> Term \<Rightarrow> Term \<Rightarrow> Term" ("(_ =_ _)") and + refl :: "Term \<Rightarrow> Term" ("(refl'(_'))") +where + Equal_form: "\<And>A a b. \<lbrakk>a : A; b : A\<rbrakk> \<Longrightarrow> a =A b : U" and + Equal_intro: "\<And>A x. x : A \<Longrightarrow> refl x : x =A x" +(* subsubsection \<open>Empty type\<close> axiomatization @@ -152,13 +171,6 @@ where Nat_intro2: "\<And>n. n : Nat \<Longrightarrow> succ n : Nat" (* computation rules *) -subsubsection \<open>Equality type\<close> - -axiomatization - Equal :: "Term \<Rightarrow> Term \<Rightarrow> Term \<Rightarrow> Term" ("(_ =_ _)") and - refl :: "Term \<Rightarrow> Term" ("(refl'(_'))") -where - Equal_form: "\<And>A a b. \<lbrakk>a : A; b : A\<rbrakk> \<Longrightarrow> a =A b : U" and - Equal_intro: "\<And>A x. x : A \<Longrightarrow> refl x : x =A x" +*) end
\ No newline at end of file diff --git a/HoTT_Theorems.thy b/HoTT_Theorems.thy index aeddf9f..a44c8f9 100644 --- a/HoTT_Theorems.thy +++ b/HoTT_Theorems.thy @@ -41,6 +41,8 @@ proposition "a : A \<Longrightarrow> (\<^bold>\<lambda>x:A. x)`a \<equiv> a" by text "Currying:" +lemma "\<lbrakk>a : A; b : B\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B. y)`a`b \<equiv> b" by simp + lemma "a : A \<Longrightarrow> (\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). f x y)`a \<equiv> \<^bold>\<lambda>y:B(a). f a y" by simp lemma "\<lbrakk>a : A; b : B(a); c : C(a)(b)\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). \<^bold>\<lambda>z:C(x)(y). f x y z)`a`b`c \<equiv> f a b c" by simp |