aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--HoTT.thy53
-rw-r--r--HoTT_Theorems.thy52
2 files changed, 69 insertions, 36 deletions
diff --git a/HoTT.thy b/HoTT.thy
index 8c9fa20..cf8b157 100644
--- a/HoTT.thy
+++ b/HoTT.thy
@@ -21,7 +21,7 @@ consts
subsection \<open>Type families\<close>
-text "Type families are implemented as meta-level lambda terms of type \<open>Term \<Rightarrow> Term\<close> that further satisfy the following property."
+text "Type families are implemented using meta-level lambda expressions \<open>P::Term \<Rightarrow> Term\<close> that further satisfy the following property."
abbreviation is_type_family :: "[Term \<Rightarrow> Term, Term] \<Rightarrow> prop" ("(3_:/ _ \<rightarrow> U)")
where "P: A \<rightarrow> U \<equiv> (\<And>x::Term. x : A \<Longrightarrow> P(x) : U)"
@@ -46,12 +46,12 @@ subsection \<open>Basic types\<close>
subsubsection \<open>Dependent function/product\<close>
-consts
- Prod :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term"
+axiomatization
+ Prod :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term" and
lambda :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term"
syntax
- "_Prod" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3\<Prod>_:_./ _)" 10)
- "__lambda" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3\<^bold>\<lambda>_:_./ _)" 10)
+ "_PROD" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3\<Prod>_:_./ _)" 10)
+ "_LAMBDA" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3\<^bold>\<lambda>_:_./ _)" 10)
translations
"\<Prod>x:A. B" \<rightleftharpoons> "CONST Prod A (\<lambda>x. B)"
"\<^bold>\<lambda>x:A. b" \<rightleftharpoons> "CONST lambda A (\<lambda>x. b)"
@@ -71,17 +71,20 @@ where
Prod_elim [elim]: "\<And>(A::Term) (B::Term \<Rightarrow> Term) (f::Term) (a::Term).
\<lbrakk>f : \<Prod>x:A. B(x); a : A\<rbrakk> \<Longrightarrow> f`a : B(a)" and
- Prod_comp [simp]: "\<And>(A::Term) (b::Term \<Rightarrow> Term) (a::Term). (\<^bold>\<lambda>x:A. b(x))`a \<equiv> b(a)" and
+ Prod_comp: "\<And>(A::Term) (b::Term \<Rightarrow> Term) (a::Term). a : A \<Longrightarrow> (\<^bold>\<lambda>x:A. b(x))`a \<equiv> b(a)" and
- Prod_uniq [simp]: "\<And>(A::Term) (f::Term). \<^bold>\<lambda>x:A. (f`x) \<equiv> f"
+ Prod_uniq: "\<And>(A::Term) (f::Term). \<^bold>\<lambda>x:A. (f`x) \<equiv> f"
lemmas Prod_formation = Prod_form Prod_form[rotated]
+\<comment> \<open>Simplification rules for Prod\<close>
+lemmas Prod_simp [simp] = Prod_comp Prod_uniq
+
text "Note that the syntax \<open>\<^bold>\<lambda>\<close> (bold lambda) used for dependent functions clashes with the proof term syntax (cf. \<section>2.5.2 of the Isabelle/Isar Implementation)."
subsubsection \<open>Dependent pair/sum\<close>
-consts
+axiomatization
Sum :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term"
syntax
"_Sum" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3\<Sum>_:_./ _)" 10)
@@ -93,33 +96,39 @@ abbreviation Pair :: "[Term, Term] \<Rightarrow> Term" (infixr "\<times>" 50)
axiomatization
pair :: "[Term, Term] \<Rightarrow> Term" ("(1'(_,/ _'))") and
- indSum :: "[Term \<Rightarrow> Term, [Term, Term] \<Rightarrow> Term, Term] \<Rightarrow> Term"
+ indSum :: "[Term \<Rightarrow> Term] \<Rightarrow> Term"
where
Sum_form: "\<And>(A::Term) (B::Term \<Rightarrow> Term). \<lbrakk>A : U; B: A \<rightarrow> U\<rbrakk> \<Longrightarrow> \<Sum>x:A. B(x) : U" and
Sum_intro [intro]: "\<And>(A::Term) (B::Term \<Rightarrow> Term) (a::Term) (b::Term).
\<lbrakk>a : A; b : B(a)\<rbrakk> \<Longrightarrow> (a, b) : \<Sum>x:A. B(x)" and
- Sum_elim [elim]: "\<And>(A::Term) (B::Term \<Rightarrow> Term) (C::Term \<Rightarrow> Term) (f::[Term, Term] \<Rightarrow> Term) (p::Term).
- \<lbrakk>C: \<Sum>x:A. B(x) \<rightarrow> U; \<And>x y::Term. \<lbrakk>x : A; y : B(x)\<rbrakk> \<Longrightarrow> f x y : C((x,y)); p : \<Sum>x:A. B(x)\<rbrakk> \<Longrightarrow> (indSum C f p) : C(p)" and
+ Sum_elim [elim]: "\<And>(A::Term) (B::Term \<Rightarrow> Term) (C::Term \<Rightarrow> Term) (f::Term) (p::Term).
+ \<lbrakk>C: \<Sum>x:A. B(x) \<rightarrow> U; f : \<Prod>x:A. \<Prod>y:B(x). C((x,y)); p : \<Sum>x:A. B(x)\<rbrakk> \<Longrightarrow> (indSum C)`f`p : C(p)" and
- Sum_comp [simp]: "\<And>(C::Term \<Rightarrow> Term) (f::[Term, Term] \<Rightarrow> Term) (a::Term) (b::Term). (indSum C f (a,b)) \<equiv> f a b"
+ Sum_comp: "\<And>(C::Term \<Rightarrow> Term) (f::Term) (a::Term) (b::Term). (* ADD CONSTRAINTS HERE *)
+ (indSum C)`f`(a,b) \<equiv> f`a`b"
lemmas Sum_formation = Sum_form Sum_form[rotated]
-definition fst :: "[Term, [Term, Term] \<Rightarrow> Term] \<Rightarrow> (Term \<Rightarrow> Term)" ("(1fst[/_,/ _])")
- where "fst[A, B] \<equiv> indSum (\<lambda>_. A) (\<lambda>a. \<lambda>b. a)"
+text "We choose to formulate the elimination rule by using the object-level function type and function application as much as possible.
+Hence only the type family \<open>C\<close> is left as a meta-level argument to the inductor indSum."
+
+\<comment> \<open>Projection functions\<close>
+
+definition fst :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term" ("(1fst[/_,/ _])")
+ where "fst[A, B] \<equiv> (indSum (\<lambda>_. A))`(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). x)"
+
+definition snd :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term" ("(1snd[/_,/ _])")
+ where "snd[A, B] \<equiv> (indSum (\<lambda>_. A))`(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). y)"
-lemma "fst[A, B](a,b) \<equiv> a" unfolding fst_def by simp
+lemma fst_comp: "\<lbrakk>a : A; b : B(a)\<rbrakk> \<Longrightarrow> fst[A,B]`(a,b) \<equiv> a" unfolding fst_def by (simp add: Sum_comp)
+lemma snd_comp: "\<lbrakk>a : A; b : B(a)\<rbrakk> \<Longrightarrow> snd[A,B]`(a,b) \<equiv> b" unfolding snd_def by (simp add: Sum_comp)
-text "A choice had to be made for the elimination rule: we formalize the function \<open>f\<close> taking \<open>a : A\<close> and \<open>b : B(x)\<close> and returning \<open>C((a,b))\<close> as a meta level \<open>f::Term \<Rightarrow> Term\<close> instead of an object logic dependent function \<open>f : \<Prod>x:A. B(x)\<close>.
-However we should be able to later show the equivalence of the formalizations."
+\<comment> \<open>Simplification rules for Sum\<close>
+lemmas Sum_simp [simp] = Sum_comp fst_comp snd_comp
-\<comment> \<open>Projection onto first component\<close>
-(*
-definition proj1 :: "Term \<Rightarrow> Term \<Rightarrow> Term" ("(proj1\<langle>_,_\<rangle>)") where
- "\<And>A B x y. proj1\<langle>A,B\<rangle> \<equiv> rec_Product(A, B, A, \<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B. (\<lambda>x. x))"
-*)
+lemma "\<lbrakk>a : A; b : B(a)\<rbrakk> \<Longrightarrow> fst[A,B]`(a,b) : A" by simp
subsubsection \<open>Empty type\<close>
diff --git a/HoTT_Theorems.thy b/HoTT_Theorems.thy
index 5922b51..aeddf9f 100644
--- a/HoTT_Theorems.thy
+++ b/HoTT_Theorems.thy
@@ -16,7 +16,7 @@ section \<open>Functions\<close>
subsection \<open>Typing functions\<close>
-text "Declaring \<open>Prod_intro\<close> with the \<open>intro\<close> attribute (in HoTT.thy) enables \<open>standard\<close> to prove the following."
+text "Declaring \<open>Prod_intro\<close> with the \<open>intro\<close> attribute (in HoTT.thy) enables \<open>standard\<close> to prove the following."
lemma "\<^bold>\<lambda>x:A. x : A\<rightarrow>A" ..
@@ -41,9 +41,9 @@ proposition "a : A \<Longrightarrow> (\<^bold>\<lambda>x:A. x)`a \<equiv> a" by
text "Currying:"
-lemma "(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B. f x y)`a \<equiv> \<^bold>\<lambda>y:B. f a y" by simp
+lemma "a : A \<Longrightarrow> (\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). f x y)`a \<equiv> \<^bold>\<lambda>y:B(a). f a y" by simp
-lemma "(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B. \<^bold>\<lambda>z:C. f x y z)`a`b`c \<equiv> f a b c" by simp
+lemma "\<lbrakk>a : A; b : B(a); c : C(a)(b)\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). \<^bold>\<lambda>z:C(x)(y). f x y z)`a`b`c \<equiv> f a b c" by simp
proposition wellformed_currying:
fixes
@@ -56,29 +56,53 @@ proposition wellformed_currying:
"\<And>x::Term. C(x): B(x) \<rightarrow> U"
shows "\<Prod>x:A. \<Prod>y:B(x). C x y : U"
proof (rule Prod_formation)
- show "\<And>x::Term. x : A \<Longrightarrow> \<Prod>y:B(x). C x y : U"
+ fix x::Term
+ assume *: "x : A"
+ show "\<Prod>y:B(x). C x y : U"
proof (rule Prod_formation)
- fix x y::Term
- assume "x : A"
- show "y : B x \<Longrightarrow> C x y : U" by (rule assms(3))
- qed (rule assms(2))
-qed (rule assms(1))
+ show "B(x) : U" using * by (rule assms)
+ qed (rule assms)
+qed (rule assms)
+
+proposition triply_curried:
+ fixes
+ A::Term and
+ B::"Term \<Rightarrow> Term" and
+ C::"[Term, Term] \<Rightarrow> Term" and
+ D::"[Term, Term, Term] \<Rightarrow> Term"
+ assumes
+ "A : U" and
+ "B: A \<rightarrow> U" and
+ "\<And>x y::Term. y : B(x) \<Longrightarrow> C(x)(y) : U" and
+ "\<And>x y z::Term. z : C(x)(y) \<Longrightarrow> D(x)(y)(z) : U"
+ shows "\<Prod>x:A. \<Prod>y:B(x). \<Prod>z:C(x)(y). D(x)(y)(z) : U"
+proof (rule Prod_formation)
+ fix x::Term assume 1: "x : A"
+ show "\<Prod>y:B(x). \<Prod>z:C(x)(y). D(x)(y)(z) : U"
+ proof (rule Prod_formation)
+ show "B(x) : U" using 1 by (rule assms)
+
+ fix y::Term assume 2: "y : B(x)"
+ show "\<Prod>z:C(x)(y). D(x)(y)(z) : U"
+ proof (rule Prod_formation)
+ show "C x y : U" using 2 by (rule assms)
+ show "\<And>z::Term. z : C(x)(y) \<Longrightarrow> D(x)(y)(z) : U" by (rule assms)
+ qed
+ qed
+qed (rule assms)
lemma
fixes
a b A::Term and
B::"Term \<Rightarrow> Term" and
f C::"[Term, Term] \<Rightarrow> Term"
- assumes "\<And>x y::Term. \<lbrakk>x : A; y : B(x)\<rbrakk> \<Longrightarrow> f x y : C x y"
+ assumes "\<And>x y::Term. f x y : C x y"
shows "\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). f x y : \<Prod>x:A. \<Prod>y:B(x). C x y"
proof
fix x::Term
- assume *: "x : A"
show "\<^bold>\<lambda>y:B(x). f x y : \<Prod>y:B(x). C x y"
proof
- fix y::Term
- assume **: "y : B(x)"
- show "f x y : C x y" by (rule assms[OF * **])
+ show "\<And>y. f x y : C x y" by (rule assms)
qed
qed