aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Equivalence.thy75
-rw-r--r--Prod.thy32
2 files changed, 83 insertions, 24 deletions
diff --git a/Equivalence.thy b/Equivalence.thy
index b8df15d..07ef0df 100644
--- a/Equivalence.thy
+++ b/Equivalence.thy
@@ -74,9 +74,7 @@ unfolding happly_def by (derive lems: fun_eq_imp_homotopy)
text \<open>Homotopy and function composition:\<close>
-declare[[pretty_compose=false]]
-
-schematic_goal composition_homotopyl:
+schematic_goal composition_homl:
assumes [intro]:
"H: f ~[x: A. B] g"
"f: A \<rightarrow> B" "g: A \<rightarrow> B" "h: B \<rightarrow> C"
@@ -84,9 +82,21 @@ schematic_goal composition_homotopyl:
shows "?prf: h o[A] f ~[x: A. C] h o[A] g"
unfolding homotopy_def compose_def proof (rule Prod_routine, subst (0 1) comp)
fix x assume [intro]: "x: A"
- show "ap[h, B, C, f`x, g`x]`(H`x): h`(f`x) =[C] h`(g`x)" by (derive, fold homotopy_def, fact+)
+ show "ap[h, B, C, f`x, g`x]`(H`x): h`(f`x) =[C] h`(g`x)" by (routine, fold homotopy_def, fact+)
qed routine
+schematic_goal composition_homr:
+ assumes [intro]:
+ "H: f ~[x: B. C] g"
+ "h: A \<rightarrow> B" "f: B \<rightarrow> C" "g: B \<rightarrow> C"
+ "A: U i" "B: U i" "C: U i"
+ shows "?prf: f o[A] h ~[x: A. C] g o[A] h"
+unfolding homotopy_def compose_def proof (rule Prod_routine, subst (0 1) comp)
+ fix x assume [intro]: "x: A"
+ show "H`(h`x): f`(h`x) =[C] g`(h`x)" by (routine, fold homotopy_def, routine)
+qed routine
+
+
section \<open>Bi-invertibility\<close>
definition biinv :: "[t, t, t] \<Rightarrow> t" ("(2biinv[_, _]/ _)")
@@ -109,10 +119,10 @@ declare biinv_type [intro]
schematic_goal id_is_biinv:
assumes [intro]: "A: U i"
shows "?prf: biinv[A, A] (id A)"
-unfolding biinv_def proof (rule Sum_routine, compute)
+unfolding biinv_def proof (rule Sum_routine)
show "<id A, \<lambda>x: A. refl x>: \<Sum>(g: A \<rightarrow> A). (g o[A] id A) ~[x: A. A] (id A)" by derive
show "<id A, \<lambda>x: A. refl x>: \<Sum>(g: A \<rightarrow> A). (id A o[A] g) ~[x: A. A] (id A)" by derive
-qed routine
+qed derive
definition equivalence :: "[t, t] \<Rightarrow> t" (infix "\<cong>" 100)
where "A \<cong> B \<equiv> \<Sum>f: A \<rightarrow> B. biinv[A, B] f"
@@ -135,22 +145,43 @@ schematic_goal biinv_imp_qinv:
assumes [intro]: "A: U i" "B: U i" "f: A \<rightarrow> B"
shows "?prf: (biinv[A, B] f) \<rightarrow> (qinv[A,B] f)"
proof (rule Prod_routine)
-assume "b: biinv[A, B] f"
-define g H g' H' where
- "g \<equiv> fst[B \<rightarrow> A, \<lambda>g. g o[A] f ~[x: A. A] id A] `
- (fst[\<Sum>g: B \<rightarrow> A. g o[A] f ~[x: A. A] id A, &(\<Sum>g: B \<rightarrow> A. f o[B] g ~[x: A. A] id B)] ` b)"
-and
- "H \<equiv> snd[B \<rightarrow> A, \<lambda>g. g o[A] f ~[x: A. A] id A] `
- (fst[\<Sum>g: B \<rightarrow> A. g o[A] f ~[x: A. A] id A, &(\<Sum>g: B \<rightarrow> A. f o[B] g ~[x: A. A] id B)] ` b)"
-and
- "g' \<equiv> fst[B \<rightarrow> A, \<lambda>g. f o[B] g ~[x: B. B] id B] `
- (snd[\<Sum>g: B \<rightarrow> A. g o[A] f ~[x: A. A] id A, &(\<Sum>g: B \<rightarrow> A. f o[B] g ~[x: A. A] id B)] ` b)"
-and
- "H' \<equiv> snd[B \<rightarrow> A, \<lambda>g. f o[B] g ~[x: B. B] id B] `
- (snd[\<Sum>g: B \<rightarrow> A. g o[A] f ~[x: A. A] id A, &(\<Sum>g: B \<rightarrow> A. f o[B] g ~[x: A. A] id B)] ` b)"
-
-have "g o[B] (f o[B] g') \<equiv> g"
-unfolding g_def g'_def proof compute
+
+assume [intro]: "b: biinv[A, B] f"
+
+text \<open>Components of the witness of biinvertibility of @{term f}:\<close>
+
+let ?fst_of_b =
+ "fst[\<Sum>g: B \<rightarrow> A. g o[A] f ~[x: A. A] id A, &\<Sum>g: B \<rightarrow> A. f o[B] g ~[x: B. B] id B]"
+and ?snd_of_b =
+ "snd[\<Sum>g: B \<rightarrow> A. g o[A] f ~[x: A. A] id A, &\<Sum>g: B \<rightarrow> A. f o[B] g ~[x: B. B] id B]"
+
+define g H g' H' where
+ "g \<equiv> fst[B \<rightarrow> A, \<lambda>g. g o[A] f ~[x: A. A] id A] ` (?fst_of_b ` b)" and
+ "H \<equiv> snd[B \<rightarrow> A, \<lambda>g. g o[A] f ~[x: A. A] id A] ` (?fst_of_b ` b)" and
+ "g' \<equiv> fst[B \<rightarrow> A, \<lambda>g. f o[B] g ~[x: B. B] id B] ` (?snd_of_b ` b)" and
+ "H' \<equiv> snd[B \<rightarrow> A, \<lambda>g. f o[B] g ~[x: B. B] id B] ` (?snd_of_b ` b)"
+
+have "H: g o[A] f ~[x: A. A] id A"
+unfolding H_def g_def proof standard+
+ have
+ "fst[\<Sum>(g: B \<rightarrow> A). g o[A] f ~[x: A. A] id A, &\<Sum>(g: B \<rightarrow> A). f o[B] g ~[x: B. B] id B] :
+ (biinv[A, B] f) \<rightarrow> (\<Sum>(g: B \<rightarrow> A). g o[A] f ~[g: A. A] id A)" unfolding biinv_def by derive
+ thus
+ "fst[\<Sum>(g: B \<rightarrow> A). g o[A] f ~[x: A. A] id A, &\<Sum>(g: B \<rightarrow> A). f o[B] g ~[x: B. B] id B]`b :
+ \<Sum>(g: B \<rightarrow> A). g o[A] f ~[g: A. A] id A" by derive rule
+qed derive
+
+moreover have "(id A) o[B] g' \<equiv> g'" proof derive
+ show "g': B \<rightarrow> A" unfolding g'_def proof
+ have
+ "snd[\<Sum>(g: B \<rightarrow> A). g o[A] f ~[x: A. A] id A, &\<Sum>(g: B \<rightarrow> A). f o[B] g ~[x: B. B] id B] :
+ (biinv[A, B] f) \<rightarrow> (\<Sum>(g: B \<rightarrow> A). f o[B] g ~[x: B. B] id B)" unfolding biinv_def by derive
+ thus
+ "snd[\<Sum>(g: B \<rightarrow> A). g o[A] f ~[x: A. A] id A, &\<Sum>(g: B \<rightarrow> A). f o[B] g ~[x: B. B] id B]`b :
+ \<Sum>(g: B \<rightarrow> A). f o[B] g ~[x: B. B] id B" by derive rule
+ qed derive
+qed
+
section \<open>Transport, homotopy, and bi-invertibility\<close>
diff --git a/Prod.thy b/Prod.thy
index 75db657..a35138c 100644
--- a/Prod.thy
+++ b/Prod.thy
@@ -119,8 +119,36 @@ unfolding compose_def by (derive lems: assms cong)
abbreviation id :: "t \<Rightarrow> t" ("(id _)" [115] 114) where "id A \<equiv> \<lambda>x: A. x"
-lemma id_type [intro]: "\<And>A. A: U i \<Longrightarrow> id A: A \<rightarrow> A" by derive
-
+lemma id_type: "\<And>A. A: U i \<Longrightarrow> id A: A \<rightarrow> A" by derive
+
+lemma id_compl:
+ assumes [intro]: "A: U i" "B: U i" "f: A \<rightarrow> B"
+ shows "id B o[A] f \<equiv> f"
+unfolding compose_def proof -
+ {
+ fix x assume [intro]: "x: A"
+ have "(id B)`(f`x) \<equiv> f`x" by derive
+ }
+ hence "\<lambda>x: A. (id B)`(f`x) \<equiv> \<lambda>x: A. f`x" by (derive lems: cong) derive
+ also have "\<lambda>x: A. f`x \<equiv> f" by derive
+ finally show "\<lambda>(x: A). (id B)`(f`x) \<equiv> f" by simp
+qed
+
+lemma id_compr:
+ assumes [intro]: "A: U i" "B: U i" "f: A \<rightarrow> B"
+ shows "f o[A] id A \<equiv> f"
+unfolding compose_def proof -
+ {
+ fix x assume [intro]: "x: A"
+ have "f`((id A)`x) \<equiv> f`x" by derive
+ }
+ hence "\<lambda>x: A. f`((id A)`x) \<equiv> \<lambda>x: A. f`x" by (derive lems: cong) derive
+ also have "\<lambda>x: A. f`x \<equiv> f" by derive
+ finally show "\<lambda>x: A. f`((id A)`x) \<equiv> f" by simp
+qed
+
+declare id_type [intro]
+lemmas id_comp [comp] = id_compl id_compr
section \<open>Universal quantification\<close>