diff options
-rw-r--r-- | HoTT_Methods.thy | 6 | ||||
-rw-r--r-- | Proj.thy | 212 |
2 files changed, 7 insertions, 211 deletions
diff --git a/HoTT_Methods.thy b/HoTT_Methods.thy index 8a4417d..8351c3c 100644 --- a/HoTT_Methods.thy +++ b/HoTT_Methods.thy @@ -57,9 +57,9 @@ method derive uses lems unfolds = ( unfold unfolds | simple lems: lems | match lems in lem: "?X : ?Y" \<Rightarrow> \<open>wellformed jdgmt: lem\<close> | - rule Universe_hierarchy | - (rule Universe_cumulative, simple lems: lems) | - (rule Universe_cumulative, match lems in lem: "?X : ?Y" \<Rightarrow> \<open>wellformed jdgmt: lem\<close>) + rule U_hierarchy | + (rule U_cumulative, simple lems: lems) | + (rule U_cumulative, match lems in lem: "?X : ?Y" \<Rightarrow> \<open>wellformed jdgmt: lem\<close>) )+ @@ -13,217 +13,13 @@ theory Proj begin -abbreviation fst :: Term where "fst \<equiv> \<^bold>\<lambda>p:\<Sum>x:?A. ?B(x). ind\<^sub>\<Sum>(\<lambda>x y. x)(p)" -abbreviation snd :: "Term \<Rightarrow> Term" where ""snd \<equiv> \<^bold>\<lambda>p: \<Sum>x:A. B(x). ind\<^sub>\<Sum>(\<lambda>x y. y) p" - - -section \<open>Overloaded syntax for dependent and nondependent pairs\<close> - -overloading - fst_dep \<equiv> fst - fst_nondep \<equiv> fst -begin - definition fst_dep :: "[Term, Typefam] \<Rightarrow> Term" where - "fst_dep A B \<equiv> \<^bold>\<lambda>p:\<Sum>x:A. B(x). ind\<^sub>\<Sum>(\<lambda>x y. x)(p)" - - definition fst_nondep :: "[Term, Term] \<Rightarrow> Term" where - "fst_nondep A B \<equiv> \<^bold>\<lambda>p: A \<times> B. ind\<^sub>\<Sum>[A, \<lambda>_. B] (\<lambda>_. A) (\<lambda>x y. x) p" -end - -overloading - snd_dep \<equiv> snd - snd_nondep \<equiv> snd -begin - definition snd_dep :: "[Term, Typefam] \<Rightarrow> Term" where - "snd_dep A B \<equiv> \<^bold>\<lambda>p: (\<Sum>x:A. B x). ind\<^sub>\<Sum>[A,B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) p" - - definition snd_nondep :: "[Term, Term] \<Rightarrow> Term" where - "snd_nondep A B \<equiv> \<^bold>\<lambda>p: A \<times> B. ind\<^sub>\<Sum>[A, \<lambda>_. B] (\<lambda>_. B) (\<lambda>x y. y) p" -end - - -section \<open>Properties\<close> +abbreviation fst :: "Term \<Rightarrow> Term" where "fst \<equiv> \<lambda>p. ind\<^sub>\<Sum>(\<lambda>x y. x)(p)" +abbreviation snd :: "Term \<Rightarrow> Term" where "snd \<equiv> \<lambda>p. ind\<^sub>\<Sum>(\<lambda>x y. y)(p)" text "Typing judgments and computation rules for the dependent and non-dependent projection functions." -lemma fst_dep_type: assumes "\<Sum>x:A. B x : U(i)" and "p : \<Sum>x:A. B x" shows "fst[A,B]`p : A" -unfolding fst_dep_def -proof - show "lambda (Sum A B) (ind\<^sub>\<Sum>[A, B] (\<lambda>_. A) (\<lambda>x y. x)) : (\<Sum>x:A. B x) \<rightarrow> A" - proof - show "A : U(i)" using assms(1) .. - show "Sum A B : U(i)" by (rule assms) - show "\<And>p. p : Sum A B \<Longrightarrow> ind\<^sub>\<Sum>[A, B] (\<lambda>_. A) (\<lambda>x y. x) p : A" - proof - show "A : U(i)" using assms(1) .. - qed - qed -qed (rule assms) - - -lemma fst_dep_comp: - assumes "A : U(i)" and "B: A \<longrightarrow> U(i)" and "a : A" and "b : B a" - shows "fst[A,B]`(a,b) \<equiv> a" -unfolding fst_dep_def -proof (subst comp) - show "Sum A B : U(i)" using assms(1-2) .. - show "\<And>x. x : Sum A B \<Longrightarrow> ind\<^sub>\<Sum>[A, B] (\<lambda>_. A) (\<lambda>x y. x) x : A" by (standard, rule assms(1), assumption+) - show "(a,b) : Sum A B" using assms .. - show "ind\<^sub>\<Sum>[A, B] (\<lambda>_. A) (\<lambda>x y. x) (a, b) \<equiv> a" by (standard, (rule assms|assumption)+) -qed (rule assms) - -\<comment> \<open> (* Old proof *) -proof - - have "fst[A,B]`(a,b) \<equiv> indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) (a,b)" - by (derive lems: assms unfolds: fst_dep_def) - - also have "indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) (a,b) \<equiv> a" - by (derive lems: assms) - - finally show "fst[A,B]`(a,b) \<equiv> a" . -qed -\<close> - -\<comment> \<open> (* Old lemma *) -text "In proving results about the second dependent projection function we often use the following lemma." - -lemma lem: - assumes "B: A \<rightarrow> U" and "x : A" and "y : B x" - shows "y : B (fst[A,B]`(x,y))" - -proof - - have "fst[A,B]`(x,y) \<equiv> x" using assms by (rule fst_dep_comp) - then show "y : B (fst[A,B]`(x,y))" using assms by simp -qed -\<close> - - -lemma snd_dep_type: - assumes "\<Sum>x:A. B x : U(i)" and "p : \<Sum>x:A. B x" - shows "snd[A,B]`p : B (fst[A,B]`p)" -unfolding fst_dep_def snd_dep_def -proof (subst (3) comp) - show "Sum A B : U(i)" by (rule assms) - show "\<And>x. x : Sum A B \<Longrightarrow> ind\<^sub>\<Sum>[A, B] (\<lambda>_. A) (\<lambda>x y. x) x : A" - proof - show "A : U(i)" using assms(1) .. - qed - show "A : U(i)" using assms(1) .. - show "p : Sum A B" by (rule assms(2)) - show "lambda - (Sum A B) - (ind\<^sub>\<Sum>[A, B] (\<lambda>q. B (lambda (Sum A B) (ind\<^sub>\<Sum>[A, B] (\<lambda>_. A) (\<lambda>x y. x))`q)) (\<lambda>x y. y)) - ` p : B (ind\<^sub>\<Sum>[A, B] (\<lambda>_. A) (\<lambda>x y. x) p)" - proof (subst (2) comp) - show "Sum A B : U(i)" by (rule assms) - show " - - -\<comment> \<open> (* Old proof *) -proof (derive lems: assms unfolds: snd_dep_def) - show "fst[A, B] : (\<Sum>x:A. B x) \<rightarrow> A" by (derive lems: assms unfolds: fst_dep_def) - - fix x y assume asm: "x : A" "y : B x" - have "B: A \<rightarrow> U" by (wellformed jdgmt: assms) - then show "y : B (fst[A, B]`(x,y))" using asm by (rule lem) -qed (assumption | rule assms)+ -\<close> - - -lemma snd_dep_comp: - assumes "A : U(i)" and "B: A \<longrightarrow> U(i)" and "a : A" and "b : B a" - shows "snd[A,B]`(a,b) \<equiv> b" - unfolding snd_dep_def fst_dep_def - by (simplify lems: assms) - -\<comment> \<open> (* Old proof *) -proof - - have "snd[A,B]`(a,b) \<equiv> indSum[A, B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) (a,b)" - proof (derive lems: assms unfolds: snd_dep_def) - show "fst[A, B] : (\<Sum>x:A. B x) \<rightarrow> A" by (derive lems: assms unfolds: fst_dep_def) - - fix x y assume asm: "x : A" "y : B x" - with assms(1) show "y : B (fst[A, B]`(x,y))" by (rule lem) - qed (assumption | derive lems: assms)+ - - also have "indSum[A, B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) (a,b) \<equiv> b" - proof (simple lems: assms) - show "fst[A, B] : (\<Sum>x:A. B x) \<rightarrow> A" by (derive lems: assms unfolds: fst_dep_def) - - fix x y assume "x : A" and "y : B x" - with assms(1) show "y : B (fst[A,B]`(x,y))" by (rule lem) - qed (assumption | rule assms)+ - - finally show "snd[A,B]`(a,b) \<equiv> b" . -qed -\<close> - - -text "Nondependent projections:" - -lemma fst_nondep_type: assumes "A \<times> B : U(i)" and "p : A \<times> B" shows "fst[A,B]`p : A" - unfolding fst_nondep_def - by (derive lems: assms) - - -lemma fst_nondep_comp: - assumes "A : U(i)" and "B : U(i)" and "a : A" and "b : B" - shows "fst[A,B]`(a,b) \<equiv> a" - unfolding fst_nondep_def - by (simplify lems: assms) - -\<comment> \<open> (* Old proof *) -proof - - have "fst[A,B]`(a,b) \<equiv> indSum[A, \<lambda>_. B] (\<lambda>_. A) (\<lambda>x y. x) (a,b)" - by (derive lems: assms unfolds: fst_nondep_def) - - also have "indSum[A, \<lambda>_. B] (\<lambda>_. A) (\<lambda>x y. x) (a,b) \<equiv> a" - by (derive lems: assms) - - finally show "fst[A,B]`(a,b) \<equiv> a" . -qed -\<close> - - -lemma snd_nondep_type: assumes "A \<times> B : U(i)" and "p : A \<times> B" shows "snd[A,B]`p : B" - unfolding snd_nondep_def - by (derive lems: assms) - -\<comment> \<open> (* Old proof *) -proof - show "snd[A,B] : A \<times> B \<rightarrow> B" - proof (derive unfolds: snd_nondep_def) - fix q assume asm: "q : A \<times> B" - show "indSum[A, \<lambda>_. B] (\<lambda>_. B) (\<lambda>x y. y) q : B" by (derive lems: asm) - qed (wellformed jdgmt: assms)+ -qed (rule assms) -\<close> - - -lemma snd_nondep_comp: - assumes "A : U(i)" and "B : U(i)" and "a : A" and "b : B" - shows "snd[A,B]`(a,b) \<equiv> b" - unfolding snd_nondep_def - by (simplify lems: assms) - -\<comment> \<open> (* Old proof *) -proof - - have "snd[A,B]`(a,b) \<equiv> indSum[A, \<lambda>_. B] (\<lambda>_. B) (\<lambda>x y. y) (a,b)" - by (derive lems: assms unfolds: snd_nondep_def) - - also have "indSum[A, \<lambda>_. B] (\<lambda>_. B) (\<lambda>x y. y) (a,b) \<equiv> b" - by (derive lems: assms) - - finally show "snd[A,B]`(a,b) \<equiv> b" . -qed -\<close> - - -lemmas Proj_rules [intro] = - fst_dep_type snd_dep_type fst_nondep_type snd_nondep_type - fst_dep_comp snd_dep_comp fst_nondep_comp snd_nondep_comp - -lemmas Proj_comps [comp] = fst_dep_comp snd_dep_comp fst_nondep_comp snd_nondep_comp +lemma assumes "\<Sum>x:A. B(x): U(i)" and "p: \<Sum>x:A. B(x)" shows "fst(p): A" + by (derive lems: assms end
\ No newline at end of file |