aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--ProdProps.thy57
1 files changed, 11 insertions, 46 deletions
diff --git a/ProdProps.thy b/ProdProps.thy
index e48b3e6..2145bf9 100644
--- a/ProdProps.thy
+++ b/ProdProps.thy
@@ -15,22 +15,18 @@ begin
section \<open>Composition\<close>
text "
- The proof of associativity is surprisingly intricate; it involves telling Isabelle to use the correct rule for \<Pi>-type judgmental equality, and the correct substitutions in the subgoals thereafter, among other things.
+ The proof of associativity needs some guidance; it involves telling Isabelle to use the correct rule for \<Pi>-type definitional equality, and the correct substitutions in the subgoals thereafter.
"
lemma compose_assoc:
- assumes
- "A \<rightarrow> B: U(i)" "B \<rightarrow> C: U(i)" and
- "\<Prod>x:C. D(x): U(i)" and
- "f: A \<rightarrow> B" "g: B \<rightarrow> C" "h: \<Prod>x:C. D(x)"
+ assumes "A: U(i)" and "f: A \<rightarrow> B" "g: B \<rightarrow> C" "h: \<Prod>x:C. D(x)"
shows "(h \<circ> g) \<circ> f \<equiv> h \<circ> (g \<circ> f)"
proof (subst (0 1 2 3) compose_def)
- text "Compute the different bracketings and show they are equivalent:"
-
show "\<^bold>\<lambda>x. (\<^bold>\<lambda>y. h`(g`y))`(f`x) \<equiv> \<^bold>\<lambda>x. h`((\<^bold>\<lambda>y. g`(f`y))`x)"
proof (subst Prod_eq)
- show "\<^bold>\<lambda>x. h`((\<^bold>\<lambda>y. g`(f`y))`x) \<equiv> \<^bold>\<lambda>x. h`((\<^bold>\<lambda>y. g`(f`y))`x)" by simp
+ \<comment> \<open>Todo: set the Simplifier (or other simplification methods) up to use \<open>Prod_eq\<close>!\<close>
+
show "\<And>x. x: A \<Longrightarrow> (\<^bold>\<lambda>y. h`(g`y))`(f`x) \<equiv> h`((\<^bold>\<lambda>y. g`(f`y))`x)"
proof compute
show "\<And>x. x: A \<Longrightarrow> h`(g`(f`x)) \<equiv> h`((\<^bold>\<lambda>y. g`(f`y))`x)"
@@ -39,49 +35,18 @@ proof (subst (0 1 2 3) compose_def)
qed
show "\<And>x. x: B \<Longrightarrow> h`(g`x): D(g`x)" by (simple lems: assms)
qed (simple lems: assms)
- qed (wellformed lems: assms)
-
- text "
- Finish off any remaining subgoals that Isabelle can't prove automatically.
- These typically require the application of specific substitutions or computation rules.
- "
- show "g \<circ> f: A \<rightarrow> C" by (subst compose_def) (derive lems: assms)
-
- show "h \<circ> g: \<Prod>x:B. D(g`x)"
- proof (subst compose_def)
- show "\<^bold>\<lambda>x. h`(g`x): \<Prod>x:B. D(g`x)"
- proof
- show "\<And>x. x: B \<Longrightarrow> h`(g`x): D(g`x)"
- proof
- show "\<And>x. x: B \<Longrightarrow> g`x: C" by (simple lems: assms)
- qed (simple lems: assms)
- qed (wellformed lems: assms)
- qed fact+
-
- show "\<Prod>x:B. D (g`x): U(i)"
- proof
- show "\<And>x. x: B \<Longrightarrow> D(g`x): U(i)"
- proof -
- have *: "D: C \<longrightarrow> U(i)" by (wellformed lems: assms)
-
- fix x assume asm: "x: B"
- have "g`x: C" by (simple lems: assms asm)
- then show "D(g`x): U(i)" by (rule *)
- qed
- qed (wellformed lems: assms)
-
- have "A: U(i)" by (wellformed lems: assms)
- moreover have "C: U(i)" by (wellformed lems: assms)
- ultimately show "A \<rightarrow> C: U(i)" ..
-qed (simple lems: assms)
-
+ qed fact
+qed
-text "The following rule is correct, but we cannot prove it using just the rules of the theory."
lemma compose_comp':
assumes "A: U(i)" and "\<And>x. x: A \<Longrightarrow> b(x): B" and "\<And>x. x: B \<Longrightarrow> c(x): C(x)"
shows "(\<^bold>\<lambda>x. c(x)) \<circ> (\<^bold>\<lambda>x. b(x)) \<equiv> \<^bold>\<lambda>x. c(b(x))"
-oops
+proof (subst compose_def, subst Prod_eq)
+ show "\<And>x. x: A \<Longrightarrow> (\<^bold>\<lambda>x. c(x))`((\<^bold>\<lambda>x. b(x))`x) \<equiv> \<^bold>\<lambda>x. c (b x)"
+ proof compute
+
+
text "However we can derive a variant with more explicit premises:"