diff options
Diffstat (limited to '')
-rw-r--r-- | Proj.thy | 196 | ||||
-rw-r--r-- | Sum.thy | 171 |
2 files changed, 197 insertions, 170 deletions
diff --git a/Proj.thy b/Proj.thy new file mode 100644 index 0000000..9387ffb --- /dev/null +++ b/Proj.thy @@ -0,0 +1,196 @@ +(* Title: HoTT/Proj.thy + Author: Josh Chen + Date: Jun 2018 + +Projection functions \<open>fst\<close> and \<open>snd\<close> for the dependent sum type. +*) + +theory Proj + imports + HoTT_Methods + Prod + Sum +begin + +consts + fst :: "[Term, 'a] \<Rightarrow> Term" ("(1fst[/_,/ _])") + snd :: "[Term, 'a] \<Rightarrow> Term" ("(1snd[/_,/ _])") + + +section \<open>Overloaded syntax for dependent and nondependent pairs\<close> + +overloading + fst_dep \<equiv> fst + fst_nondep \<equiv> fst +begin + definition fst_dep :: "[Term, Typefam] \<Rightarrow> Term" where + "fst_dep A B \<equiv> \<^bold>\<lambda>p: (\<Sum>x:A. B x). indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) p" + + definition fst_nondep :: "[Term, Term] \<Rightarrow> Term" where + "fst_nondep A B \<equiv> \<^bold>\<lambda>p: A \<times> B. indSum[A, \<lambda>_. B] (\<lambda>_. A) (\<lambda>x y. x) p" +end + +overloading + snd_dep \<equiv> snd + snd_nondep \<equiv> snd +begin + definition snd_dep :: "[Term, Typefam] \<Rightarrow> Term" where + "snd_dep A B \<equiv> \<^bold>\<lambda>p: (\<Sum>x:A. B x). indSum[A,B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) p" + + definition snd_nondep :: "[Term, Term] \<Rightarrow> Term" where + "snd_nondep A B \<equiv> \<^bold>\<lambda>p: A \<times> B. indSum[A, \<lambda>_. B] (\<lambda>_. B) (\<lambda>x y. y) p" +end + + +section \<open>Properties\<close> + +text "Typing judgments and computation rules for the dependent and non-dependent projection functions." + +lemma fst_dep_type: + assumes "p : \<Sum>x:A. B x" + shows "fst[A,B]`p : A" + +proof \<comment> \<open>The standard reasoner knows to backchain with the product elimination rule here...\<close> + \<comment> \<open>Also write about this proof: compare the effect of letting the standard reasoner do simplifications, as opposed to using the minus switch and writing everything out explicitly from first principles.\<close> + + have *: "\<Sum>x:A. B x : U" using assms .. + + show "fst[A,B]: (\<Sum>x:A. B x) \<rightarrow> A" + + proof (unfold fst_dep_def, standard) \<comment> \<open>...and with the product introduction rule here...\<close> + show "\<And>p. p : \<Sum>x:A. B x \<Longrightarrow> indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) p : A" + + proof \<comment> \<open>...and with sum elimination here.\<close> + show "A : U" using * .. + qed + + qed (rule *) + +qed (rule assms) + + +lemma fst_dep_comp: (* Potential for automation *) + assumes "B: A \<rightarrow> U" and "a : A" and "b : B a" + shows "fst[A,B]`(a,b) \<equiv> a" + +proof - + \<comment> "Write about this proof: unfolding, how we set up the introduction rules (explain \<open>..\<close>), do a trace of the proof, explain the meaning of keywords, etc." + + have *: "A : U" using assms(2) .. (* I keep thinking this should not have to be done explicitly, but rather automated. *) + + have "fst[A,B]`(a,b) \<equiv> indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) (a,b)" + proof (unfold fst_dep_def, standard) + show "\<And>p. p : \<Sum>x:A. B x \<Longrightarrow> indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) p : A" using * .. + show "(a,b) : \<Sum>x:A. B x" using assms .. + qed + + also have "indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) (a,b) \<equiv> a" + by (rule Sum_comp) (rule *, assumption, (rule assms)+) + + finally show "fst[A,B]`(a,b) \<equiv> a" . +qed + + +text "In proving results about the second dependent projection function we often use the following two lemmas." + +lemma snd_dep_welltyped: + assumes "p : \<Sum>x:A. B x" + shows "B (fst[A,B]`p) : U" + +proof - + have "\<Sum>x:A. B x : U" using assms .. + then have *: "B: A \<rightarrow> U" .. + + have "fst[A,B]`p : A" using assms by (rule fst_dep_type) + then show "B (fst[A,B]`p) : U" by (rule *) +qed + + +lemma snd_dep_const_type: + assumes "B: A \<rightarrow> U" and "x : A" and "y : B x" + shows "y : B (fst[A,B]`(x,y))" + +proof - + have "fst[A,B]`(x,y) \<equiv> x" using assms by (rule fst_dep_comp) + then show "y : B (fst[A,B]`(x,y))" using assms by simp +qed + + +lemma snd_dep_type: + assumes "p : \<Sum>x:A. B x" + shows "snd[A,B]`p : B (fst[A,B]`p)" + +proof + have *: "\<Sum>x:A. B x : U" using assms .. + + show "snd[A, B] : \<Prod>p:(\<Sum>x:A. B x). B (fst[A,B]`p)" + + proof (unfold snd_dep_def, standard) + show "\<And>p. p : \<Sum>x:A. B x \<Longrightarrow> indSum[A,B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) p : B (fst[A,B]`p)" + + proof (standard, elim snd_dep_welltyped) + fix x y assume 1: "x : A" and 2: "y : B x" + show "y : B (fst[A,B]`(x,y))" + proof - + have "B: A \<rightarrow> U" using * .. + then show "y : B (fst[A,B]`(x,y))" using 1 2 by (rule snd_dep_const_type) + qed + qed + + qed (rule *) + +qed (rule assms) + + +lemma snd_dep_comp: + assumes "B: A \<rightarrow> U" and "a : A" and "b : B a" + shows "snd[A,B]`(a,b) \<equiv> b" + +proof - + have "snd[A,B]`(a,b) \<equiv> indSum[A, B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) (a,b)" + proof (unfold snd_dep_def, standard) + show "(a,b) : \<Sum>x:A. B x" using assms .. + + fix p assume *: "p : \<Sum>x:A. B x" + show "indSum[A,B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) p : B (fst[A,B]`p)" + proof (standard, elim snd_dep_welltyped) + show "\<And>x y. \<lbrakk>x : A; y : B x\<rbrakk> \<Longrightarrow> y : B (fst[A,B]`(x,y))" using assms + by (elim snd_dep_const_type) + qed (rule *) + qed + + also have "indSum[A, B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) (a,b) \<equiv> b" + proof (standard, elim snd_dep_welltyped) + show "\<And>x y. \<lbrakk>x : A; y : B x\<rbrakk> \<Longrightarrow> y : B (fst[A,B]`(x,y))" using assms + by (elim snd_dep_const_type) + qed (rule assms)+ + + finally show "snd[A,B]`(a,b) \<equiv> b" . +qed + + +text "For non-dependent projection functions:" + +print_statement fst_dep_type +print_statement fst_dep_type[where ?p = p and ?A = A and ?B = "\<lambda>_. B"] + + +lemma fst_nondep_type: "p : A \<times> B \<Longrightarrow> fst[A,B]`p : A" +by (rule fst_dep_type[where ?B = "\<lambda>_. B"]) + + +lemma fst_nondep_comp: + assumes "a : A" and "b : B" + shows "fst[A,B]`(a,b) \<equiv> a" +proof (unfold fst_nondep_def) + have "A : U" using assms(1) .. + then show "fst[A,B]`(a,b) \<equiv> a" unfolding fst_nondep_def +qed + +lemma snd_nondep_comp: "\<lbrakk>a : A; b : B\<rbrakk> \<Longrightarrow> snd[A,B]`(a,b) \<equiv> b" +proof - + assume "a : A" and "b : B" + then have "(a, b) : A \<times> B" .. + then show "snd[A,B]`(a,b) \<equiv> b" unfolding snd_nondep_def by simp +qed + @@ -6,7 +6,7 @@ Dependent sum type. *) theory Sum - imports Prod + imports HoTT_Base begin axiomatization @@ -58,173 +58,4 @@ abbreviation Pair :: "[Term, Term] \<Rightarrow> Term" (infixr "\<times>" 50) where "A \<times> B \<equiv> \<Sum>_:A. B" -section \<open>Projection functions\<close> - -consts - fst :: "[Term, 'a] \<Rightarrow> Term" ("(1fst[/_,/ _])") - snd :: "[Term, 'a] \<Rightarrow> Term" ("(1snd[/_,/ _])") - -overloading - fst_dep \<equiv> fst - fst_nondep \<equiv> fst -begin - definition fst_dep :: "[Term, Typefam] \<Rightarrow> Term" where - "fst_dep A B \<equiv> \<^bold>\<lambda>p: (\<Sum>x:A. B x). indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) p" - - definition fst_nondep :: "[Term, Term] \<Rightarrow> Term" where - "fst_nondep A B \<equiv> \<^bold>\<lambda>p: A \<times> B. indSum[A, \<lambda>_. B] (\<lambda>_. A) (\<lambda>x y. x) p" -end - -overloading - snd_dep \<equiv> snd - snd_nondep \<equiv> snd -begin - definition snd_dep :: "[Term, Typefam] \<Rightarrow> Term" where - "snd_dep A B \<equiv> \<^bold>\<lambda>p: (\<Sum>x:A. B x). indSum[A,B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) p" - - definition snd_nondep :: "[Term, Term] \<Rightarrow> Term" where - "snd_nondep A B \<equiv> \<^bold>\<lambda>p: A \<times> B. indSum[A, \<lambda>_. B] (\<lambda>_. B) (\<lambda>x y. y) p" -end - -text "Typing judgments and computation rules for the dependent and non-dependent projection functions." - -lemma fst_dep_type: - assumes "p : \<Sum>x:A. B x" - shows "fst[A,B]`p : A" - -proof \<comment> \<open>The standard reasoner knows to backchain with the product elimination rule here...\<close> - \<comment> \<open>Also write about this proof: compare the effect of letting the standard reasoner do simplifications, as opposed to using the minus switch and writing everything out explicitly from first principles.\<close> - - have *: "\<Sum>x:A. B x : U" using assms .. - - show "fst[A,B]: (\<Sum>x:A. B x) \<rightarrow> A" - - proof (unfold fst_dep_def, standard) \<comment> \<open>...and with the product introduction rule here...\<close> - show "\<And>p. p : \<Sum>x:A. B x \<Longrightarrow> indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) p : A" - - proof \<comment> \<open>...and with sum elimination here.\<close> - show "A : U" using * .. - qed - - qed (rule *) - -qed (rule assms) - - -lemma fst_dep_comp: (* Potential for automation *) - assumes "B: A \<rightarrow> U" and "a : A" and "b : B a" - shows "fst[A,B]`(a,b) \<equiv> a" - -proof - - \<comment> "Write about this proof: unfolding, how we set up the introduction rules (explain \<open>..\<close>), do a trace of the proof, explain the meaning of keywords, etc." - - have *: "A : U" using assms(2) .. (* I keep thinking this should not have to be done explicitly, but rather automated. *) - - have "fst[A,B]`(a,b) \<equiv> indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) (a,b)" - proof (unfold fst_dep_def, standard) - show "\<And>p. p : \<Sum>x:A. B x \<Longrightarrow> indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) p : A" using * .. - show "(a,b) : \<Sum>x:A. B x" using assms .. - qed - - also have "indSum[A,B] (\<lambda>_. A) (\<lambda>x y. x) (a,b) \<equiv> a" - by (rule Sum_comp) (rule *, assumption, (rule assms)+) - - finally show "fst[A,B]`(a,b) \<equiv> a" . -qed - - -text "In proving results about the second dependent projection function we often use the following two lemmas." - -lemma snd_dep_welltyped: - assumes "p : \<Sum>x:A. B x" - shows "B (fst[A,B]`p) : U" -proof - - have "\<Sum>x:A. B x : U" using assms .. - then have *: "B: A \<rightarrow> U" .. - - have "fst[A,B]`p : A" using assms by (rule fst_dep_type) - then show "B (fst[A,B]`p) : U" by (rule *) -qed - -lemma snd_dep_const_type: - assumes "B: A \<rightarrow> U" and "x : A" and "y : B x" - shows "y : B (fst[A,B]`(x,y))" -proof - - have "fst[A,B]`(x,y) \<equiv> x" using assms by (rule fst_dep_comp) - then show "y : B (fst[A,B]`(x,y))" using assms by simp -qed - - -lemma snd_dep_type: - assumes "p : \<Sum>x:A. B x" - shows "snd[A,B]`p : B (fst[A,B]`p)" -proof - have *: "\<Sum>x:A. B x : U" using assms .. - - show "snd[A, B] : \<Prod>p:(\<Sum>x:A. B x). B (fst[A,B]`p)" - - proof (unfold snd_dep_def, standard) - show "\<And>p. p : \<Sum>x:A. B x \<Longrightarrow> indSum[A,B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) p : B (fst[A,B]`p)" - - proof (standard, elim snd_dep_welltyped) - fix x y assume 1: "x : A" and 2: "y : B x" - show "y : B (fst[A,B]`(x,y))" - - proof - - have "B: A \<rightarrow> U" using * .. - then show "y : B (fst[A,B]`(x,y))" using 1 2 by (rule snd_dep_const_type) - qed - - qed - - qed (rule *) - -qed (rule assms) - - -lemma snd_dep_comp: - assumes "B: A \<rightarrow> U" and "a : A" and "b : B a" - shows "snd[A,B]`(a,b) \<equiv> b" -proof - - have "snd[A,B]`(a,b) \<equiv> indSum[A, B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) (a,b)" - proof (unfold snd_dep_def, standard) - show "(a,b) : \<Sum>x:A. B x" using assms .. - - fix p assume *: "p : \<Sum>x:A. B x" - show "indSum[A,B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) p : B (fst[A,B]`p)" - proof (standard, elim snd_dep_welltyped) - show "\<And>x y. \<lbrakk>x : A; y : B x\<rbrakk> \<Longrightarrow> y : B (fst[A,B]`(x,y))" using assms - by (elim snd_dep_const_type) - qed (rule *) - qed - - also have "indSum[A, B] (\<lambda>q. B (fst[A,B]`q)) (\<lambda>x y. y) (a,b) \<equiv> b" - proof (standard, elim snd_dep_welltyped) - show "\<And>x y. \<lbrakk>x : A; y : B x\<rbrakk> \<Longrightarrow> y : B (fst[A,B]`(x,y))" using assms - by (elim snd_dep_const_type) - qed (rule assms)+ - - finally show "snd[A,B]`(a,b) \<equiv> b" . -qed - - -text "For non-dependent projection functions:" - -lemma fst_nondep_comp: - assumes "a : A" and "b : B" - shows "fst[A,B]`(a,b) \<equiv> a" -proof (unfold fst_nondep_def) - have "A : U" using assms(1) .. - then show "fst[A,B]`(a,b) \<equiv> a" unfolding fst_nondep_def -qed - -lemma snd_nondep_comp: "\<lbrakk>a : A; b : B\<rbrakk> \<Longrightarrow> snd[A,B]`(a,b) \<equiv> b" -proof - - assume "a : A" and "b : B" - then have "(a, b) : A \<times> B" .. - then show "snd[A,B]`(a,b) \<equiv> b" unfolding snd_nondep_def by simp -qed - - - end
\ No newline at end of file |