aboutsummaryrefslogtreecommitdiff
path: root/tests
diff options
context:
space:
mode:
authorJosh Chen2018-08-18 16:18:23 +0200
committerJosh Chen2018-08-18 16:18:23 +0200
commit03c734ea067bd28210530d862137133e2215ca80 (patch)
tree3e21b040d84af0337abecd7d6db2a530764c144b /tests
parenta1603ffdddcbe333a3e4f0f328a4c25698c2d475 (diff)
HoTT_Test.thy should go in test/
Diffstat (limited to 'tests')
-rw-r--r--tests/Test.thy121
1 files changed, 121 insertions, 0 deletions
diff --git a/tests/Test.thy b/tests/Test.thy
new file mode 100644
index 0000000..433039c
--- /dev/null
+++ b/tests/Test.thy
@@ -0,0 +1,121 @@
+(* Title: HoTT/tests/Test.thy
+ Author: Josh Chen
+ Date: Aug 2018
+
+This is an old "test suite" from early implementations of the theory.
+It is not always guaranteed to be up to date, or reflect most recent versions of the theory.
+*)
+
+theory HoTT_Test
+ imports HoTT
+begin
+
+
+text "
+ A bunch of theorems and other statements for sanity-checking, as well as things that should be automatically simplified.
+
+ Things that *should* be automated:
+ - Checking that \<open>A\<close> is a well-formed type, when writing things like \<open>x : A\<close> and \<open>A : U\<close>.
+ - Checking that the argument to a (dependent/non-dependent) function matches the type? Also the arguments to a pair?
+"
+
+declare[[unify_trace_simp, unify_trace_types, simp_trace, simp_trace_depth_limit=5]]
+ \<comment> \<open>Turn on trace for unification and the simplifier, for debugging.\<close>
+
+
+section \<open>\<Pi>-type\<close>
+
+subsection \<open>Typing functions\<close>
+
+text "
+ Declaring \<open>Prod_intro\<close> with the \<open>intro\<close> attribute (in HoTT.thy) enables \<open>standard\<close> to prove the following.
+"
+
+proposition assumes "A : U(i)" shows "\<^bold>\<lambda>x. x: A \<rightarrow> A" using assms ..
+
+proposition
+ assumes "A : U(i)" and "A \<equiv> B"
+ shows "\<^bold>\<lambda>x. x : B \<rightarrow> A"
+proof -
+ have "A\<rightarrow>A \<equiv> B\<rightarrow>A" using assms by simp
+ moreover have "\<^bold>\<lambda>x. x : A \<rightarrow> A" using assms(1) ..
+ ultimately show "\<^bold>\<lambda>x. x : B \<rightarrow> A" by simp
+qed
+
+proposition
+ assumes "A : U(i)" and "B : U(i)"
+ shows "\<^bold>\<lambda>x y. x : A \<rightarrow> B \<rightarrow> A"
+by (simple lems: assms)
+
+
+subsection \<open>Function application\<close>
+
+proposition assumes "a : A" shows "(\<^bold>\<lambda>x. x)`a \<equiv> a" by (simple lems: assms)
+
+text "Currying:"
+
+lemma
+ assumes "a : A" and "\<And>x. x: A \<Longrightarrow> B(x): U(i)"
+ shows "(\<^bold>\<lambda>x y. y)`a \<equiv> \<^bold>\<lambda>y. y"
+proof
+ show "\<And>x. x : A \<Longrightarrow> \<^bold>\<lambda>y. y : B(x) \<rightarrow> B(x)" by (simple lems: assms)
+qed fact
+
+lemma "\<lbrakk>A: U(i); B: U(i); a : A; b : B\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x y. y)`a`b \<equiv> b" by (compute, simple)
+
+lemma "\<lbrakk>A: U(i); a : A \<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x y. f x y)`a \<equiv> \<^bold>\<lambda>y. f a y"
+proof compute
+ show "\<And>x. \<lbrakk>A: U(i); x: A\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>y. f x y: \<Prod>y:B(x). C x y"
+ proof
+ oops
+
+lemma "\<lbrakk>a : A; b : B(a); c : C(a)(b)\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x. \<^bold>\<lambda>y. \<^bold>\<lambda>z. f x y z)`a`b`c \<equiv> f a b c"
+ oops
+
+
+subsection \<open>Currying functions\<close>
+
+proposition curried_function_formation:
+ fixes A B C
+ assumes
+ "A : U(i)" and
+ "B: A \<longrightarrow> U(i)" and
+ "\<And>x. C(x): B(x) \<longrightarrow> U(i)"
+ shows "\<Prod>x:A. \<Prod>y:B(x). C x y : U(i)"
+ by (simple lems: assms)
+
+
+proposition higher_order_currying_formation:
+ assumes
+ "A: U(i)" and
+ "B: A \<longrightarrow> U(i)" and
+ "\<And>x y. y: B(x) \<Longrightarrow> C(x)(y): U(i)" and
+ "\<And>x y z. z : C(x)(y) \<Longrightarrow> D(x)(y)(z): U(i)"
+ shows "\<Prod>x:A. \<Prod>y:B(x). \<Prod>z:C(x)(y). D(x)(y)(z): U(i)"
+ by (simple lems: assms)
+
+
+lemma curried_type_judgment:
+ assumes "A: U(i)" "B: A \<longrightarrow> U(i)" "\<And>x y. \<lbrakk>x : A; y : B(x)\<rbrakk> \<Longrightarrow> f x y : C x y"
+ shows "\<^bold>\<lambda>x y. f x y : \<Prod>x:A. \<Prod>y:B(x). C x y"
+ by (simple lems: assms)
+
+
+text "
+ Polymorphic identity function. Trivial due to lambda expression polymorphism.
+ (Was more involved in previous monomorphic incarnations.)
+"
+
+definition Id :: "Term" where "Id \<equiv> \<^bold>\<lambda>x. x"
+
+lemma "\<lbrakk>x: A\<rbrakk> \<Longrightarrow> Id`x \<equiv> x"
+unfolding Id_def by (compute, simple)
+
+
+section \<open>Natural numbers\<close>
+
+text "Automatic proof methods recognize natural numbers."
+
+proposition "succ(succ(succ 0)): Nat" by simple
+
+end