aboutsummaryrefslogtreecommitdiff
path: root/tests/Test.thy
diff options
context:
space:
mode:
authorJosh Chen2018-09-18 11:38:54 +0200
committerJosh Chen2018-09-18 11:38:54 +0200
commit6857e783fa5cb91f058be322a18fb9ea583f2aad (patch)
treec963fc0cb56157c251ad326dd28e2671ef52a2f9 /tests/Test.thy
parentdcf87145a1059659099bbecde55973de0d36d43f (diff)
Overhaul of the theory presentations. New methods in HoTT_Methods.thy for handling universes. Commit for release 0.1.0!
Diffstat (limited to 'tests/Test.thy')
-rw-r--r--tests/Test.thy103
1 files changed, 46 insertions, 57 deletions
diff --git a/tests/Test.thy b/tests/Test.thy
index de65dbd..6f9f996 100644
--- a/tests/Test.thy
+++ b/tests/Test.thy
@@ -1,121 +1,110 @@
-(* Title: HoTT/tests/Test.thy
- Author: Josh Chen
- Date: Aug 2018
+(*
+Title: tests/Test.thy
+Author: Joshua Chen
+Date: 2018
-This is an old "test suite" from early implementations of the theory.
-It is not always guaranteed to be up to date, or reflect most recent versions of the theory.
+This is an old test suite from early implementations.
+It is not always guaranteed to be up to date or to reflect most recent versions of the theory.
*)
theory Test
- imports "../HoTT"
+imports "../HoTT"
+
begin
-text "
- A bunch of theorems and other statements for sanity-checking, as well as things that should be automatically simplified.
-
- Things that *should* be automated:
- - Checking that \<open>A\<close> is a well-formed type, when writing things like \<open>x : A\<close> and \<open>A : U\<close>.
- - Checking that the argument to a (dependent/non-dependent) function matches the type? Also the arguments to a pair?
-"
+text \<open>
+A bunch of theorems and other statements for sanity-checking, as well as things that should be automatically simplified.
+
+Things that *should* be automated:
+\<^item> Checking that @{term A} is a well-formed type, when writing things like @{prop "x: A"} and @{prop "A: U i"}.
+\<^item> Checking that the argument to a (dependent/non-dependent) function matches the type? Also the arguments to a pair?
+\<close>
declare[[unify_trace_simp, unify_trace_types, simp_trace, simp_trace_depth_limit=5]]
- \<comment> \<open>Turn on trace for unification and the simplifier, for debugging.\<close>
+\<comment> \<open>Turn on trace for unification and the Simplifier, for debugging.\<close>
section \<open>\<Prod>-type\<close>
subsection \<open>Typing functions\<close>
-text "
- Declaring \<open>Prod_intro\<close> with the \<open>intro\<close> attribute (in HoTT.thy) enables \<open>standard\<close> to prove the following.
-"
+text \<open>Declaring @{thm Prod_intro} with the @{attribute intro} attribute enables @{method rule} to prove the following.\<close>
-proposition assumes "A : U(i)" shows "\<^bold>\<lambda>x. x: A \<rightarrow> A" by (routine lems: assms)
+proposition assumes "A : U(i)" shows "\<^bold>\<lambda>x. x: A \<rightarrow> A"
+by (routine add: assms)
proposition
assumes "A : U(i)" and "A \<equiv> B"
shows "\<^bold>\<lambda>x. x : B \<rightarrow> A"
proof -
have "A \<rightarrow> A \<equiv> B \<rightarrow> A" using assms by simp
- moreover have "\<^bold>\<lambda>x. x : A \<rightarrow> A" by (routine lems: assms)
+ moreover have "\<^bold>\<lambda>x. x : A \<rightarrow> A" by (routine add: assms)
ultimately show "\<^bold>\<lambda>x. x : B \<rightarrow> A" by simp
qed
proposition
assumes "A : U(i)" and "B : U(i)"
shows "\<^bold>\<lambda>x y. x : A \<rightarrow> B \<rightarrow> A"
-by (routine lems: assms)
-
+by (routine add: assms)
subsection \<open>Function application\<close>
-proposition assumes "a : A" shows "(\<^bold>\<lambda>x. x)`a \<equiv> a" by (derive lems: assms)
-
-text "Currying:"
+proposition assumes "a : A" shows "(\<^bold>\<lambda>x. x)`a \<equiv> a"
+by (derive lems: assms)
lemma
assumes "a : A" and "\<And>x. x: A \<Longrightarrow> B(x): U(i)"
shows "(\<^bold>\<lambda>x y. y)`a \<equiv> \<^bold>\<lambda>y. y"
-proof compute
- show "\<And>x. x : A \<Longrightarrow> \<^bold>\<lambda>y. y : B(x) \<rightarrow> B(x)" by (routine lems: assms)
-qed fact
+by (derive lems: assms)
-lemma "\<lbrakk>A: U(i); B: U(i); a : A; b : B\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x y. y)`a`b \<equiv> b" by derive
+lemma "\<lbrakk>A: U(i); B: U(i); a : A; b : B\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x y. y)`a`b \<equiv> b"
+by derive
-lemma "\<lbrakk>A: U(i); a : A \<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x y. f x y)`a \<equiv> \<^bold>\<lambda>y. f a y"
-proof compute
- show "\<And>x. \<lbrakk>A: U(i); x: A\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>y. f x y: \<Prod>y:B(x). C x y"
- proof
- oops
+lemma "\<lbrakk>A: U(i); a : A\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x y. f x y)`a \<equiv> \<^bold>\<lambda>y. f a y"
+proof derive
+oops \<comment> \<open>Missing some premises.\<close>
lemma "\<lbrakk>a : A; b : B(a); c : C(a)(b)\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x. \<^bold>\<lambda>y. \<^bold>\<lambda>z. f x y z)`a`b`c \<equiv> f a b c"
- oops
+proof derive
+oops
subsection \<open>Currying functions\<close>
proposition curried_function_formation:
- fixes A B C
- assumes
- "A : U(i)" and
- "B: A \<longrightarrow> U(i)" and
- "\<And>x. C(x): B(x) \<longrightarrow> U(i)"
+ assumes "A : U(i)" and "B: A \<longrightarrow> U(i)" and "\<And>x. C(x): B(x) \<longrightarrow> U(i)"
shows "\<Prod>x:A. \<Prod>y:B(x). C x y : U(i)"
- by (routine lems: assms)
-
+by (routine add: assms)
proposition higher_order_currying_formation:
assumes
- "A: U(i)" and
- "B: A \<longrightarrow> U(i)" and
+ "A: U(i)" and "B: A \<longrightarrow> U(i)" and
"\<And>x y. y: B(x) \<Longrightarrow> C(x)(y): U(i)" and
"\<And>x y z. z : C(x)(y) \<Longrightarrow> D(x)(y)(z): U(i)"
shows "\<Prod>x:A. \<Prod>y:B(x). \<Prod>z:C(x)(y). D(x)(y)(z): U(i)"
- by (routine lems: assms)
-
+by (routine add: assms)
lemma curried_type_judgment:
- assumes "A: U(i)" "B: A \<longrightarrow> U(i)" "\<And>x y. \<lbrakk>x : A; y : B(x)\<rbrakk> \<Longrightarrow> f x y : C x y"
+ assumes "A: U(i)" and "B: A \<longrightarrow> U(i)" and "\<And>x y. \<lbrakk>x : A; y : B(x)\<rbrakk> \<Longrightarrow> f x y : C x y"
shows "\<^bold>\<lambda>x y. f x y : \<Prod>x:A. \<Prod>y:B(x). C x y"
- by (routine lems: assms)
+by (routine add: assms)
-text "
- Polymorphic identity function is now trivial due to lambda expression polymorphism.
- (Was more involved in previous monomorphic incarnations.)
-"
+text \<open>
+Polymorphic identity function is now trivial due to lambda expression polymorphism.
+It was more involved in previous monomorphic incarnations.
+\<close>
-definition Id :: "Term" where "Id \<equiv> \<^bold>\<lambda>x. x"
-
-lemma "\<lbrakk>x: A\<rbrakk> \<Longrightarrow> Id`x \<equiv> x"
-unfolding Id_def by (compute, routine)
+lemma "x: A \<Longrightarrow> id`x \<equiv> x"
+by derive
section \<open>Natural numbers\<close>
-text "Automatic proof methods recognize natural numbers."
+text \<open>Automatic proof methods recognize natural numbers.\<close>
+
+proposition "succ(succ(succ 0)): \<nat>" by routine
-proposition "succ(succ(succ 0)): Nat" by routine
end