diff options
author | Josh Chen | 2020-07-09 13:35:39 +0200 |
---|---|---|
committer | Josh Chen | 2020-07-09 13:35:39 +0200 |
commit | 831f33468f227c0dc96bd31380236f2c77e70c52 (patch) | |
tree | 5fa4718dc7a902a84ddb0e50750e962755f81b79 /spartan/core | |
parent | fc9ba2141aefa685bacc47a9c2eab2cc718d8620 (diff) |
Non-annotated object lambda
Diffstat (limited to 'spartan/core')
-rw-r--r-- | spartan/core/Spartan.thy | 65 |
1 files changed, 45 insertions, 20 deletions
diff --git a/spartan/core/Spartan.thy b/spartan/core/Spartan.thy index ed21934..1ca027f 100644 --- a/spartan/core/Spartan.thy +++ b/spartan/core/Spartan.thy @@ -15,24 +15,37 @@ keywords begin -section \<open>Preamble\<close> +section \<open>Prelude\<close> declare [[eta_contract=false]] +setup \<open> +let + val typ = Simple_Syntax.read_typ + fun mixfix (sy, ps, p) = Mixfix (Input.string sy, ps, p, Position.no_range) +in + Sign.del_syntax (Print_Mode.ASCII, true) + [("_lambda", typ "pttrns \<Rightarrow> 'a \<Rightarrow> logic", mixfix ("(3fn _./ _)", [0, 3], 3))] + #> Sign.del_syntax Syntax.mode_default + [("_lambda", typ "pttrns \<Rightarrow> 'a \<Rightarrow> logic", mixfix ("(3\<lambda>_./ _)", [0, 3], 3))] + #> Sign.add_syntax Syntax.mode_default + [("_lambda", typ "pttrns \<Rightarrow> 'a \<Rightarrow> logic", mixfix ("(3fn _./ _)", [0, 3], 3))] +end +\<close> + syntax "_dollar" :: \<open>logic \<Rightarrow> logic \<Rightarrow> logic\<close> (infixr "$" 3) translations "a $ b" \<rightharpoonup> "a (b)" -abbreviation (input) K where "K x \<equiv> \<lambda>_. x" - - -section \<open>Metatype setup\<close> +abbreviation (input) K where "K x \<equiv> fn _. x" typedecl o +judgment has_type :: \<open>o \<Rightarrow> o \<Rightarrow> prop\<close> ("(2_:/ _)" 999) -section \<open>Judgments\<close> -judgment has_type :: \<open>o \<Rightarrow> o \<Rightarrow> prop\<close> ("(2_:/ _)" 999) +section \<open>Type annotations\<close> + +consts anno :: \<open>o \<Rightarrow> o \<Rightarrow> o\<close> ("'(_: _')") section \<open>Universes\<close> @@ -74,15 +87,15 @@ syntax "_lam" :: \<open>idts \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> ("(2\<lambda>_: _./ _)" 30) "_lam2" :: \<open>idts \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> translations - "\<Prod>x xs: A. B" \<rightharpoonup> "CONST Pi A (\<lambda>x. _Pi2 xs A B)" - "_Pi2 x A B" \<rightharpoonup> "\<Prod>x: A. B" - "\<Prod>x: A. B" \<rightleftharpoons> "CONST Pi A (\<lambda>x. B)" - "\<lambda>x xs: A. b" \<rightharpoonup> "CONST lam A (\<lambda>x. _lam2 xs A b)" + "\<Prod>x xs: A. B" \<rightharpoonup> "CONST Pi A (fn x. _Pi2 xs A B)" + "_Pi2 x A B" \<rightharpoonup> "\<Prod>x: A. B" + "\<Prod>x: A. B" \<rightleftharpoons> "CONST Pi A (fn x. B)" + "\<lambda>x xs: A. b" \<rightharpoonup> "CONST lam A (fn x. _lam2 xs A b)" "_lam2 x A b" \<rightharpoonup> "\<lambda>x: A. b" - "\<lambda>x: A. b" \<rightleftharpoons> "CONST lam A (\<lambda>x. b)" + "\<lambda>x: A. b" \<rightleftharpoons> "CONST lam A (fn x. b)" abbreviation Fn (infixr "\<rightarrow>" 40) where "A \<rightarrow> B \<equiv> \<Prod>_: A. B" - +term "\<lambda>x: A. b x" axiomatization where PiF: "\<lbrakk>\<And>x. x: A \<Longrightarrow> B x: U i; A: U i\<rbrakk> \<Longrightarrow> \<Prod>x: A. B x: U i" and @@ -113,7 +126,7 @@ axiomatization syntax "_Sum" :: \<open>idt \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> ("(2\<Sum>_: _./ _)" 20) -translations "\<Sum>x: A. B" \<rightleftharpoons> "CONST Sig A (\<lambda>x. B)" +translations "\<Sum>x: A. B" \<rightleftharpoons> "CONST Sig A (fn x. B)" abbreviation Prod (infixl "\<times>" 60) where "A \<times> B \<equiv> \<Sum>_: A. B" @@ -132,7 +145,7 @@ axiomatization where \<And>x. x : A \<Longrightarrow> B x: U i; \<And>x y. \<lbrakk>x: A; y: B x\<rbrakk> \<Longrightarrow> f x y: C <x, y>; \<And>p. p: \<Sum>x: A. B x \<Longrightarrow> C p: U i - \<rbrakk> \<Longrightarrow> SigInd A (\<lambda>x. B x) (\<lambda>p. C p) f p: C p" and + \<rbrakk> \<Longrightarrow> SigInd A (fn x. B x) (fn p. C p) f p: C p" and Sig_comp: "\<lbrakk> a: A; @@ -140,7 +153,7 @@ axiomatization where \<And>x. x: A \<Longrightarrow> B x: U i; \<And>p. p: \<Sum>x: A. B x \<Longrightarrow> C p: U i; \<And>x y. \<lbrakk>x: A; y: B x\<rbrakk> \<Longrightarrow> f x y: C <x, y> - \<rbrakk> \<Longrightarrow> SigInd A (\<lambda>x. B x) (\<lambda>p. C p) f <a, b> \<equiv> f a b" and + \<rbrakk> \<Longrightarrow> SigInd A (fn x. B x) (fn p. C p) f <a, b> \<equiv> f a b" and Sig_cong: "\<lbrakk> \<And>x. x: A \<Longrightarrow> B x \<equiv> B' x; @@ -249,7 +262,7 @@ consts rewrite_HOLE :: "'a::{}" ("\<hole>") lemma eta_expand: fixes f :: "'a::{} \<Rightarrow> 'b::{}" - shows "f \<equiv> \<lambda>x. f x" . + shows "f \<equiv> fn x. f x" . lemma rewr_imp: assumes "PROP A \<equiv> PROP B" @@ -301,11 +314,23 @@ text \<open>Automatically insert inhabitation judgments where needed:\<close> syntax inhabited :: \<open>o \<Rightarrow> prop\<close> ("(_)") translations "inhabited A" \<rightharpoonup> "CONST has_type {} A" +text \<open>Implicit lambdas\<close> + +definition lam_i where [implicit]: "lam_i f \<equiv> lam ? f" + +syntax + "_lam_i" :: \<open>idts \<Rightarrow> o \<Rightarrow> o\<close> ("(2\<lambda>_./ _)" 30) + "_lam_i2" :: \<open>idts \<Rightarrow> o \<Rightarrow> o\<close> +translations + "\<lambda>x xs. b" \<rightharpoonup> "CONST lam_i (fn x. _lam_i2 xs b)" + "_lam_i2 x b" \<rightharpoonup> "\<lambda>x. b" + "\<lambda>x. b" \<rightleftharpoons> "CONST lam_i (fn x. b)" + subsection \<open>Lambda coercion\<close> \<comment> \<open>Coerce object lambdas to meta-lambdas\<close> abbreviation (input) lambda :: \<open>o \<Rightarrow> o \<Rightarrow> o\<close> - where "lambda f \<equiv> \<lambda>x. f `x" + where "lambda f \<equiv> fn x. f `x" ML_file \<open>~~/src/Tools/subtyping.ML\<close> declare [[coercion_enabled, coercion lambda]] @@ -409,8 +434,8 @@ lemma id_U [typechk]: section \<open>Pairs\<close> -definition "fst A B \<equiv> \<lambda>p: \<Sum>x: A. B x. SigInd A B (\<lambda>_. A) (\<lambda>x y. x) p" -definition "snd A B \<equiv> \<lambda>p: \<Sum>x: A. B x. SigInd A B (\<lambda>p. B (fst A B p)) (\<lambda>x y. y) p" +definition "fst A B \<equiv> \<lambda>p: \<Sum>x: A. B x. SigInd A B (fn _. A) (fn x y. x) p" +definition "snd A B \<equiv> \<lambda>p: \<Sum>x: A. B x. SigInd A B (fn p. B (fst A B p)) (fn x y. y) p" lemma fst_type [typechk]: assumes "A: U i" "\<And>x. x: A \<Longrightarrow> B x: U i" |