aboutsummaryrefslogtreecommitdiff
path: root/spartan/core/Spartan.thy
diff options
context:
space:
mode:
authorJosh Chen2021-01-31 02:54:51 +0000
committerJosh Chen2021-01-31 02:54:51 +0000
commit2feb56660700af107abb5a28a7120052ac405518 (patch)
treea18015cfa47928fb288037a78fe5b1d3bed87a92 /spartan/core/Spartan.thy
parentaff3d43d9865e7b8d082f0c239d2c73eee1fb291 (diff)
rename things + some small changes
Diffstat (limited to 'spartan/core/Spartan.thy')
-rw-r--r--spartan/core/Spartan.thy571
1 files changed, 0 insertions, 571 deletions
diff --git a/spartan/core/Spartan.thy b/spartan/core/Spartan.thy
deleted file mode 100644
index 5046b6a..0000000
--- a/spartan/core/Spartan.thy
+++ /dev/null
@@ -1,571 +0,0 @@
-text \<open>Spartan type theory\<close>
-
-theory Spartan
-imports
- Pure
- "HOL-Eisbach.Eisbach"
- "HOL-Eisbach.Eisbach_Tools"
-keywords
- "Theorem" "Lemma" "Corollary" "Proposition" "Definition" :: thy_goal_stmt and
- "assuming" :: prf_asm % "proof" and
- "focus" "\<^item>" "\<^enum>" "\<circ>" "\<diamondop>" "~" :: prf_script_goal % "proof" and
- "calc" "print_coercions" :: thy_decl and
- "rhs" "def" "vars" :: quasi_command
-
-begin
-
-section \<open>Notation\<close>
-
-declare [[eta_contract=false]]
-
-text \<open>
-Rebind notation for meta-lambdas since we want to use \<open>\<lambda>\<close> for the object
-lambdas. Metafunctions now use the binder \<open>fn\<close>.
-\<close>
-setup \<open>
-let
- val typ = Simple_Syntax.read_typ
- fun mixfix (sy, ps, p) = Mixfix (Input.string sy, ps, p, Position.no_range)
-in
- Sign.del_syntax (Print_Mode.ASCII, true)
- [("_lambda", typ "pttrns \<Rightarrow> 'a \<Rightarrow> logic", mixfix ("(3%_./ _)", [0, 3], 3))]
- #> Sign.del_syntax Syntax.mode_default
- [("_lambda", typ "pttrns \<Rightarrow> 'a \<Rightarrow> logic", mixfix ("(3\<lambda>_./ _)", [0, 3], 3))]
- #> Sign.add_syntax Syntax.mode_default
- [("_lambda", typ "pttrns \<Rightarrow> 'a \<Rightarrow> logic", mixfix ("(3fn _./ _)", [0, 3], 3))]
-end
-\<close>
-
-syntax "_app" :: \<open>logic \<Rightarrow> logic \<Rightarrow> logic\<close> (infixr "$" 3)
-translations "a $ b" \<rightharpoonup> "a (b)"
-
-abbreviation (input) K where "K x \<equiv> fn _. x"
-
-
-section \<open>Metalogic\<close>
-
-text \<open>
-HOAS embedding of dependent type theory: metatype of expressions, and typing
-judgment.
-\<close>
-
-typedecl o
-
-consts has_type :: \<open>o \<Rightarrow> o \<Rightarrow> prop\<close> ("(2_:/ _)" 999)
-
-
-section \<open>Axioms\<close>
-
-subsection \<open>Universes\<close>
-
-text \<open>\<omega>-many cumulative Russell universes.\<close>
-
-typedecl lvl
-
-axiomatization
- O :: \<open>lvl\<close> and
- S :: \<open>lvl \<Rightarrow> lvl\<close> and
- lt :: \<open>lvl \<Rightarrow> lvl \<Rightarrow> prop\<close> (infix "<" 900)
- where
- O_min: "O < S i" and
- lt_S: "i < S i" and
- lt_trans: "i < j \<Longrightarrow> j < k \<Longrightarrow> i < k"
-
-axiomatization U :: \<open>lvl \<Rightarrow> o\<close> where
- Ui_in_Uj: "i < j \<Longrightarrow> U i: U j" and
- U_cumul: "A: U i \<Longrightarrow> i < j \<Longrightarrow> A: U j"
-
-lemma Ui_in_USi:
- "U i: U (S i)"
- by (rule Ui_in_Uj, rule lt_S)
-
-lemma U_lift:
- "A: U i \<Longrightarrow> A: U (S i)"
- by (erule U_cumul, rule lt_S)
-
-subsection \<open>\<Prod>-type\<close>
-
-axiomatization
- Pi :: \<open>o \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> o\<close> and
- lam :: \<open>o \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> o\<close> and
- app :: \<open>o \<Rightarrow> o \<Rightarrow> o\<close> ("(1_ `_)" [120, 121] 120)
-
-syntax
- "_Pi" :: \<open>idts \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> ("(2\<Prod>_: _./ _)" 30)
- "_Pi2" :: \<open>idts \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close>
- "_lam" :: \<open>idts \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> ("(2\<lambda>_: _./ _)" 30)
- "_lam2" :: \<open>idts \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close>
-translations
- "\<Prod>x xs: A. B" \<rightharpoonup> "CONST Pi A (fn x. _Pi2 xs A B)"
- "_Pi2 x A B" \<rightharpoonup> "\<Prod>x: A. B"
- "\<Prod>x: A. B" \<rightleftharpoons> "CONST Pi A (fn x. B)"
- "\<lambda>x xs: A. b" \<rightharpoonup> "CONST lam A (fn x. _lam2 xs A b)"
- "_lam2 x A b" \<rightharpoonup> "\<lambda>x: A. b"
- "\<lambda>x: A. b" \<rightleftharpoons> "CONST lam A (fn x. b)"
-
-abbreviation Fn (infixr "\<rightarrow>" 40) where "A \<rightarrow> B \<equiv> \<Prod>_: A. B"
-
-axiomatization where
- PiF: "\<lbrakk>A: U i; \<And>x. x: A \<Longrightarrow> B x: U i\<rbrakk> \<Longrightarrow> \<Prod>x: A. B x: U i" and
-
- PiI: "\<lbrakk>A: U i; \<And>x. x: A \<Longrightarrow> b x: B x\<rbrakk> \<Longrightarrow> \<lambda>x: A. b x: \<Prod>x: A. B x" and
-
- PiE: "\<lbrakk>f: \<Prod>x: A. B x; a: A\<rbrakk> \<Longrightarrow> f `a: B a" and
-
- beta: "\<lbrakk>a: A; \<And>x. x: A \<Longrightarrow> b x: B x\<rbrakk> \<Longrightarrow> (\<lambda>x: A. b x) `a \<equiv> b a" and
-
- eta: "f: \<Prod>x: A. B x \<Longrightarrow> \<lambda>x: A. f `x \<equiv> f" and
-
- Pi_cong: "\<lbrakk>
- \<And>x. x: A \<Longrightarrow> B x \<equiv> B' x;
- A: U i;
- \<And>x. x: A \<Longrightarrow> B x: U j;
- \<And>x. x: A \<Longrightarrow> B' x: U j
- \<rbrakk> \<Longrightarrow> \<Prod>x: A. B x \<equiv> \<Prod>x: A. B' x" and
-
- lam_cong: "\<lbrakk>\<And>x. x: A \<Longrightarrow> b x \<equiv> c x; A: U i\<rbrakk> \<Longrightarrow> \<lambda>x: A. b x \<equiv> \<lambda>x: A. c x"
-
-subsection \<open>\<Sum>-type\<close>
-
-axiomatization
- Sig :: \<open>o \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> o\<close> and
- pair :: \<open>o \<Rightarrow> o \<Rightarrow> o\<close> ("(2<_,/ _>)") and
- SigInd :: \<open>o \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> (o \<Rightarrow> o) \<Rightarrow> (o \<Rightarrow> o \<Rightarrow> o) \<Rightarrow> o \<Rightarrow> o\<close>
-
-syntax "_Sum" :: \<open>idt \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> ("(2\<Sum>_: _./ _)" 20)
-
-translations "\<Sum>x: A. B" \<rightleftharpoons> "CONST Sig A (fn x. B)"
-
-abbreviation Prod (infixl "\<times>" 60)
- where "A \<times> B \<equiv> \<Sum>_: A. B"
-
-abbreviation "and" (infixl "\<and>" 60)
- where "A \<and> B \<equiv> A \<times> B"
-
-axiomatization where
- SigF: "\<lbrakk>A: U i; \<And>x. x: A \<Longrightarrow> B x: U i\<rbrakk> \<Longrightarrow> \<Sum>x: A. B x: U i" and
-
- SigI: "\<lbrakk>\<And>x. x: A \<Longrightarrow> B x: U i; a: A; b: B a\<rbrakk> \<Longrightarrow> <a, b>: \<Sum>x: A. B x" and
-
- SigE: "\<lbrakk>
- p: \<Sum>x: A. B x;
- A: U i;
- \<And>x. x : A \<Longrightarrow> B x: U j;
- \<And>p. p: \<Sum>x: A. B x \<Longrightarrow> C p: U k;
- \<And>x y. \<lbrakk>x: A; y: B x\<rbrakk> \<Longrightarrow> f x y: C <x, y>
- \<rbrakk> \<Longrightarrow> SigInd A (fn x. B x) (fn p. C p) f p: C p" and
-
- Sig_comp: "\<lbrakk>
- a: A;
- b: B a;
- \<And>x. x: A \<Longrightarrow> B x: U i;
- \<And>p. p: \<Sum>x: A. B x \<Longrightarrow> C p: U i;
- \<And>x y. \<lbrakk>x: A; y: B x\<rbrakk> \<Longrightarrow> f x y: C <x, y>
- \<rbrakk> \<Longrightarrow> SigInd A (fn x. B x) (fn p. C p) f <a, b> \<equiv> f a b" and
-
- Sig_cong: "\<lbrakk>
- \<And>x. x: A \<Longrightarrow> B x \<equiv> B' x;
- A: U i;
- \<And>x. x : A \<Longrightarrow> B x: U j;
- \<And>x. x : A \<Longrightarrow> B' x: U j
- \<rbrakk> \<Longrightarrow> \<Sum>x: A. B x \<equiv> \<Sum>x: A. B' x"
-
-
-section \<open>Type checking & inference\<close>
-
-ML_file \<open>lib.ML\<close>
-ML_file \<open>context_facts.ML\<close>
-ML_file \<open>context_tactical.ML\<close>
-
-\<comment> \<open>Rule attributes for the typechecker\<close>
-named_theorems form and intr and comp
-
-\<comment> \<open>Elimination/induction automation and the `elim` attribute\<close>
-ML_file \<open>elimination.ML\<close>
-
-lemmas
- [form] = PiF SigF and
- [intr] = PiI SigI and
- [elim ?f] = PiE and
- [elim ?p] = SigE and
- [comp] = beta Sig_comp and
- [cong] = Pi_cong lam_cong Sig_cong
-
-\<comment> \<open>Subsumption rule\<close>
-lemma sub:
- assumes "a: A" "A \<equiv> A'"
- shows "a: A'"
- using assms by simp
-
-\<comment> \<open>Basic rewriting of computational equality\<close>
-ML_file \<open>~~/src/Tools/misc_legacy.ML\<close>
-ML_file \<open>~~/src/Tools/IsaPlanner/isand.ML\<close>
-ML_file \<open>~~/src/Tools/IsaPlanner/rw_inst.ML\<close>
-ML_file \<open>~~/src/Tools/IsaPlanner/zipper.ML\<close>
-ML_file \<open>~~/src/Tools/eqsubst.ML\<close>
-
-\<comment> \<open>Term normalization, type checking & inference\<close>
-ML_file \<open>types.ML\<close>
-
-method_setup typechk =
- \<open>Scan.succeed (K (CONTEXT_METHOD (
- CHEADGOAL o Types.check_infer)))\<close>
-
-method_setup known =
- \<open>Scan.succeed (K (CONTEXT_METHOD (
- CHEADGOAL o Types.known_ctac)))\<close>
-
-setup \<open>
-let val typechk = fn ctxt =>
- NO_CONTEXT_TACTIC ctxt o Types.check_infer
- (Simplifier.prems_of ctxt @ Context_Facts.known ctxt)
-in
- map_theory_simpset (fn ctxt => ctxt
- addSolver (mk_solver "" typechk))
-end
-\<close>
-
-
-section \<open>Statements and goals\<close>
-
-ML_file \<open>focus.ML\<close>
-ML_file \<open>elaboration.ML\<close>
-ML_file \<open>elaborated_statement.ML\<close>
-ML_file \<open>goals.ML\<close>
-
-
-section \<open>Proof methods\<close>
-
-named_theorems intro \<comment> \<open>Logical introduction rules\<close>
-
-lemmas [intro] = PiI[rotated] SigI
-
-\<comment> \<open>Case reasoning rules\<close>
-ML_file \<open>cases.ML\<close>
-
-ML_file \<open>tactics.ML\<close>
-
-method_setup rule =
- \<open>Attrib.thms >> (fn ths => K (CONTEXT_METHOD (
- CHEADGOAL o SIDE_CONDS 0 (rule_ctac ths))))\<close>
-
-method_setup dest =
- \<open>Scan.lift (Scan.option (Args.parens Parse.nat))
- -- Attrib.thms >> (fn (n_opt, ths) => K (CONTEXT_METHOD (
- CHEADGOAL o SIDE_CONDS 0 (dest_ctac n_opt ths))))\<close>
-
-method_setup intro =
- \<open>Scan.succeed (K (CONTEXT_METHOD (
- CHEADGOAL o SIDE_CONDS 0 intro_ctac)))\<close>
-
-method_setup intros =
- \<open>Scan.lift (Scan.option Parse.nat) >> (fn n_opt =>
- K (CONTEXT_METHOD (fn facts =>
- case n_opt of
- SOME n => CREPEAT_N n (CHEADGOAL (SIDE_CONDS 0 intro_ctac facts))
- | NONE => CCHANGED (CREPEAT (CCHANGED (
- CHEADGOAL (SIDE_CONDS 0 intro_ctac facts)))))))\<close>
-
-method_setup elim =
- \<open>Scan.repeat Args.term >> (fn tms => K (CONTEXT_METHOD (
- CHEADGOAL o SIDE_CONDS 0 (elim_ctac tms))))\<close>
-
-method_setup cases =
- \<open>Args.term >> (fn tm => K (CONTEXT_METHOD (
- CHEADGOAL o SIDE_CONDS 0 (cases_ctac tm))))\<close>
-
-method elims = elim+
-method facts = fact+
-
-
-subsection \<open>Reflexivity\<close>
-
-named_theorems refl
-method refl = (rule refl)
-
-
-subsection \<open>Trivial proofs (modulo automatic discharge of side conditions)\<close>
-
-method_setup this =
- \<open>Scan.succeed (K (CONTEXT_METHOD (fn facts =>
- CHEADGOAL (SIDE_CONDS 0
- (CONTEXT_TACTIC' (fn ctxt => resolve_tac ctxt facts))
- facts))))\<close>
-
-
-subsection \<open>Rewriting\<close>
-
-consts compute_hole :: "'a::{}" ("\<hole>")
-
-lemma eta_expand:
- fixes f :: "'a::{} \<Rightarrow> 'b::{}"
- shows "f \<equiv> fn x. f x" .
-
-lemma rewr_imp:
- assumes "PROP A \<equiv> PROP B"
- shows "(PROP A \<Longrightarrow> PROP C) \<equiv> (PROP B \<Longrightarrow> PROP C)"
- apply (Pure.rule Pure.equal_intr_rule)
- apply (drule equal_elim_rule2[OF assms]; assumption)
- apply (drule equal_elim_rule1[OF assms]; assumption)
- done
-
-lemma imp_cong_eq:
- "(PROP A \<Longrightarrow> (PROP B \<Longrightarrow> PROP C) \<equiv> (PROP B' \<Longrightarrow> PROP C')) \<equiv>
- ((PROP B \<Longrightarrow> PROP A \<Longrightarrow> PROP C) \<equiv> (PROP B' \<Longrightarrow> PROP A \<Longrightarrow> PROP C'))"
- apply (Pure.intro Pure.equal_intr_rule)
- apply (drule (1) cut_rl; drule Pure.equal_elim_rule1 Pure.equal_elim_rule2;
- assumption)+
- apply (drule Pure.equal_elim_rule1 Pure.equal_elim_rule2; assumption)+
- done
-
-ML_file \<open>~~/src/HOL/Library/cconv.ML\<close>
-ML_file \<open>comp.ML\<close>
-
-\<comment> \<open>\<open>compute\<close> simplifies terms via computational equalities\<close>
-method compute uses add =
- changed \<open>repeat_new \<open>(simp add: comp add | subst comp); typechk?\<close>\<close>
-
-
-subsection \<open>Calculational reasoning\<close>
-
-consts "rhs" :: \<open>'a\<close> ("..")
-
-ML_file \<open>calc.ML\<close>
-
-
-section \<open>Implicits\<close>
-
-text \<open>
- \<open>{}\<close> is used to mark implicit arguments in definitions, while \<open>?\<close> is expanded
- immediately for elaboration in statements.
-\<close>
-
-consts
- iarg :: \<open>'a\<close> ("{}")
- hole :: \<open>'b\<close> ("?")
-
-ML_file \<open>implicits.ML\<close>
-
-attribute_setup implicit = \<open>Scan.succeed Implicits.implicit_defs_attr\<close>
-
-ML \<open>val _ = Context.>> (Syntax_Phases.term_check 1 "" Implicits.make_holes)\<close>
-
-text \<open>Automatically insert inhabitation judgments where needed:\<close>
-
-syntax inhabited :: \<open>o \<Rightarrow> prop\<close> ("(_)")
-translations "inhabited A" \<rightharpoonup> "CONST has_type ? A"
-
-
-subsection \<open>Implicit lambdas\<close>
-
-definition lam_i where [implicit]: "lam_i f \<equiv> lam {} f"
-
-syntax
- "_lam_i" :: \<open>idts \<Rightarrow> o \<Rightarrow> o\<close> ("(2\<lambda>_./ _)" 30)
- "_lam_i2" :: \<open>idts \<Rightarrow> o \<Rightarrow> o\<close>
-translations
- "\<lambda>x xs. b" \<rightharpoonup> "CONST lam_i (fn x. _lam_i2 xs b)"
- "_lam_i2 x b" \<rightharpoonup> "\<lambda>x. b"
- "\<lambda>x. b" \<rightleftharpoons> "CONST lam_i (fn x. b)"
-
-translations "\<lambda>x. b" \<leftharpoondown> "\<lambda>x: A. b"
-
-
-section \<open>Lambda coercion\<close>
-
-\<comment> \<open>Coerce object lambdas to meta-lambdas\<close>
-abbreviation (input) lambda :: \<open>o \<Rightarrow> o \<Rightarrow> o\<close>
- where "lambda f \<equiv> fn x. f `x"
-
-ML_file \<open>~~/src/Tools/subtyping.ML\<close>
-declare [[coercion_enabled, coercion lambda]]
-
-translations "f x" \<leftharpoondown> "f `x"
-
-
-section \<open>Functions\<close>
-
-Lemma eta_exp:
- assumes "f: \<Prod>x: A. B x"
- shows "f \<equiv> \<lambda>x: A. f x"
- by (rule eta[symmetric])
-
-Lemma refine_codomain:
- assumes
- "A: U i"
- "f: \<Prod>x: A. B x"
- "\<And>x. x: A \<Longrightarrow> f `x: C x"
- shows "f: \<Prod>x: A. C x"
- by (comp eta_exp)
-
-Lemma lift_universe_codomain:
- assumes "A: U i" "f: A \<rightarrow> U j"
- shows "f: A \<rightarrow> U (S j)"
- using U_lift
- by (rule refine_codomain)
-
-subsection \<open>Function composition\<close>
-
-definition "funcomp A g f \<equiv> \<lambda>x: A. g `(f `x)"
-
-syntax
- "_funcomp" :: \<open>o \<Rightarrow> o \<Rightarrow> o \<Rightarrow> o\<close> ("(2_ \<circ>\<^bsub>_\<^esub>/ _)" [111, 0, 110] 110)
-translations
- "g \<circ>\<^bsub>A\<^esub> f" \<rightleftharpoons> "CONST funcomp A g f"
-
-Lemma funcompI [type]:
- assumes
- "A: U i"
- "B: U i"
- "\<And>x. x: B \<Longrightarrow> C x: U i"
- "f: A \<rightarrow> B"
- "g: \<Prod>x: B. C x"
- shows
- "g \<circ>\<^bsub>A\<^esub> f: \<Prod>x: A. C (f x)"
- unfolding funcomp_def by typechk
-
-Lemma funcomp_assoc [comp]:
- assumes
- "A: U i"
- "f: A \<rightarrow> B"
- "g: B \<rightarrow> C"
- "h: \<Prod>x: C. D x"
- shows
- "(h \<circ>\<^bsub>B\<^esub> g) \<circ>\<^bsub>A\<^esub> f \<equiv> h \<circ>\<^bsub>A\<^esub> g \<circ>\<^bsub>A\<^esub> f"
- unfolding funcomp_def by compute
-
-Lemma funcomp_lambda_comp [comp]:
- assumes
- "A: U i"
- "\<And>x. x: A \<Longrightarrow> b x: B"
- "\<And>x. x: B \<Longrightarrow> c x: C x"
- shows
- "(\<lambda>x: B. c x) \<circ>\<^bsub>A\<^esub> (\<lambda>x: A. b x) \<equiv> \<lambda>x: A. c (b x)"
- unfolding funcomp_def by compute
-
-Lemma funcomp_apply_comp [comp]:
- assumes
- "A: U i" "B: U i" "\<And>x y. x: B \<Longrightarrow> C x: U i"
- "f: A \<rightarrow> B" "g: \<Prod>x: B. C x"
- "x: A"
- shows "(g \<circ>\<^bsub>A\<^esub> f) x \<equiv> g (f x)"
- unfolding funcomp_def by compute
-
-subsection \<open>Notation\<close>
-
-definition funcomp_i (infixr "\<circ>" 120)
- where [implicit]: "funcomp_i g f \<equiv> g \<circ>\<^bsub>{}\<^esub> f"
-
-translations "g \<circ> f" \<leftharpoondown> "g \<circ>\<^bsub>A\<^esub> f"
-
-subsection \<open>Identity function\<close>
-
-abbreviation id where "id A \<equiv> \<lambda>x: A. x"
-
-lemma
- id_type [type]: "A: U i \<Longrightarrow> id A: A \<rightarrow> A" and
- id_comp [comp]: "x: A \<Longrightarrow> (id A) x \<equiv> x" \<comment> \<open>for the occasional manual rewrite\<close>
- by compute+
-
-Lemma id_left [comp]:
- assumes "A: U i" "B: U i" "f: A \<rightarrow> B"
- shows "(id B) \<circ>\<^bsub>A\<^esub> f \<equiv> f"
- by (comp eta_exp[of f]) (compute, rule eta)
-
-Lemma id_right [comp]:
- assumes "A: U i" "B: U i" "f: A \<rightarrow> B"
- shows "f \<circ>\<^bsub>A\<^esub> (id A) \<equiv> f"
- by (comp eta_exp[of f]) (compute, rule eta)
-
-lemma id_U [type]:
- "id (U i): U i \<rightarrow> U i"
- using Ui_in_USi by typechk
-
-
-section \<open>Pairs\<close>
-
-definition "fst A B \<equiv> \<lambda>p: \<Sum>x: A. B x. SigInd A B (fn _. A) (fn x y. x) p"
-definition "snd A B \<equiv> \<lambda>p: \<Sum>x: A. B x. SigInd A B (fn p. B (fst A B p)) (fn x y. y) p"
-
-Lemma fst_type [type]:
- assumes "A: U i" "\<And>x. x: A \<Longrightarrow> B x: U i"
- shows "fst A B: (\<Sum>x: A. B x) \<rightarrow> A"
- unfolding fst_def by typechk
-
-Lemma fst_comp [comp]:
- assumes
- "A: U i" "\<And>x. x: A \<Longrightarrow> B x: U i" "a: A" "b: B a"
- shows "fst A B <a, b> \<equiv> a"
- unfolding fst_def by compute
-
-Lemma snd_type [type]:
- assumes "A: U i" "\<And>x. x: A \<Longrightarrow> B x: U i"
- shows "snd A B: \<Prod>p: \<Sum>x: A. B x. B (fst A B p)"
- unfolding snd_def by typechk
-
-Lemma snd_comp [comp]:
- assumes "A: U i" "\<And>x. x: A \<Longrightarrow> B x: U i" "a: A" "b: B a"
- shows "snd A B <a, b> \<equiv> b"
- unfolding snd_def by compute
-
-subsection \<open>Notation\<close>
-
-definition fst_i ("fst")
- where [implicit]: "fst \<equiv> Spartan.fst {} {}"
-
-definition snd_i ("snd")
- where [implicit]: "snd \<equiv> Spartan.snd {} {}"
-
-translations
- "fst" \<leftharpoondown> "CONST Spartan.fst A B"
- "snd" \<leftharpoondown> "CONST Spartan.snd A B"
-
-subsection \<open>Projections\<close>
-
-Lemma fst [type]:
- assumes
- "A: U i" "\<And>x. x: A \<Longrightarrow> B x: U i"
- "p: \<Sum>x: A. B x"
- shows "fst p: A"
- by typechk
-
-Lemma snd [type]:
- assumes
- "A: U i" "\<And>x. x: A \<Longrightarrow> B x: U i"
- "p: \<Sum>x: A. B x"
- shows "snd p: B (fst p)"
- by typechk
-
-method fst for p::o = rule fst[where ?p=p]
-method snd for p::o = rule snd[where ?p=p]
-
-text \<open>Double projections:\<close>
-
-definition [implicit]: "p\<^sub>1\<^sub>1 p \<equiv> Spartan.fst {} {} (Spartan.fst {} {} p)"
-definition [implicit]: "p\<^sub>1\<^sub>2 p \<equiv> Spartan.snd {} {} (Spartan.fst {} {} p)"
-definition [implicit]: "p\<^sub>2\<^sub>1 p \<equiv> Spartan.fst {} {} (Spartan.snd {} {} p)"
-definition [implicit]: "p\<^sub>2\<^sub>2 p \<equiv> Spartan.snd {} {} (Spartan.snd {} {} p)"
-
-translations
- "CONST p\<^sub>1\<^sub>1 p" \<leftharpoondown> "fst (fst p)"
- "CONST p\<^sub>1\<^sub>2 p" \<leftharpoondown> "snd (fst p)"
- "CONST p\<^sub>2\<^sub>1 p" \<leftharpoondown> "fst (snd p)"
- "CONST p\<^sub>2\<^sub>2 p" \<leftharpoondown> "snd (snd p)"
-
-Lemma (def) distribute_Sig:
- assumes
- "A: U i"
- "\<And>x. x: A \<Longrightarrow> B x: U i"
- "\<And>x. x: A \<Longrightarrow> C x: U i"
- "p: \<Sum>x: A. B x \<times> C x"
- shows "(\<Sum>x: A. B x) \<times> (\<Sum>x: A. C x)"
- proof intro
- have "fst p: A" and "snd p: B (fst p) \<times> C (fst p)"
- by typechk+
- thus "<fst p, fst (snd p)>: \<Sum>x: A. B x"
- and "<fst p, snd (snd p)>: \<Sum>x: A. C x"
- by typechk+
- qed
-
-
-end