aboutsummaryrefslogtreecommitdiff
path: root/Univalence.thy
diff options
context:
space:
mode:
authorJosh Chen2018-09-11 15:40:37 +0200
committerJosh Chen2018-09-11 15:40:37 +0200
commitcd7609be19289fefe5404fce6a3fed4957ae7157 (patch)
tree90dc109eba3902692f2f170f02a0ab066286027c /Univalence.thy
parent637ee546f3eb9a927d83bd19ae0bee09031bd7d5 (diff)
Running into trouble with the polymorphic identity function
Diffstat (limited to 'Univalence.thy')
-rw-r--r--Univalence.thy66
1 files changed, 55 insertions, 11 deletions
diff --git a/Univalence.thy b/Univalence.thy
index b999a55..e16ea03 100644
--- a/Univalence.thy
+++ b/Univalence.thy
@@ -7,7 +7,7 @@ Definitions of homotopy, equivalence and the univalence axiom.
theory Univalence
imports
HoTT_Methods
- Equal
+ EqualProps
ProdProps
Sum
begin
@@ -22,7 +22,7 @@ axiomatization homotopic :: "[Term, Term] \<Rightarrow> Term" (infix "~" 100) w
\<rbrakk> \<Longrightarrow> f ~ g \<equiv> \<Prod>x:A. (f`x) =[B x] (g`x)"
axiomatization isequiv :: "Term \<Rightarrow> Term" where
- isequiv_def: "f: A \<rightarrow> B \<Longrightarrow> isequiv f \<equiv> (\<Sum>g: A \<rightarrow> B. g \<circ> f ~ id) \<times> (\<Sum>g: A \<rightarrow> B. f \<circ> g ~ id)"
+ isequiv_def: "f: A \<rightarrow> B \<Longrightarrow> isequiv f \<equiv> (\<Sum>g: B \<rightarrow> A. g \<circ> f ~ id) \<times> (\<Sum>g: B \<rightarrow> A. f \<circ> g ~ id)"
definition equivalence :: "[Term, Term] \<Rightarrow> Term" (infix "\<simeq>" 100)
where "A \<simeq> B \<equiv> \<Sum>f: A \<rightarrow> B. isequiv f"
@@ -36,12 +36,12 @@ lemma isequiv_id:
proof (derive lems: assms isequiv_def homotopic_def)
fix g assume asm: "g: A \<rightarrow> A"
show "id \<circ> g: A \<rightarrow> A"
- unfolding compose_def by (derive lems: asm assms)
+ unfolding compose_def by (routine lems: asm assms)
show "\<Prod>x:A. ((id \<circ> g)`x) =\<^sub>A (id`x): U i"
- unfolding compose_def by (derive lems: asm assms)
-
+ unfolding compose_def by (routine lems: asm assms)
next
+
show "<\<^bold>\<lambda>x. x, \<^bold>\<lambda>x. refl x>: \<Sum>g:A \<rightarrow> A. (g \<circ> id) ~ id"
unfolding compose_def by (derive lems: assms homotopic_def)
@@ -50,22 +50,66 @@ proof (derive lems: assms isequiv_def homotopic_def)
qed (rule assms)
+text "We use the following lemma in a few proofs:"
+
+lemma isequiv_type:
+ assumes "A: U i" and "B: U i" and "f: A \<rightarrow> B"
+ shows "isequiv f: U i"
+ by (derive lems: assms isequiv_def homotopic_def compose_def)
+
+
text "The equivalence relation \<open>\<simeq>\<close> is symmetric:"
-lemma
+lemma equiv_sym:
assumes "A: U i" and "id: A \<rightarrow> A"
shows "<id, <<id, \<^bold>\<lambda>x. refl x>, <id, \<^bold>\<lambda>x. refl x>>>: A \<simeq> A"
unfolding equivalence_def proof
show "<<id, \<^bold>\<lambda>x. refl x>, <id, \<^bold>\<lambda>x. refl x>>: isequiv id" using assms by (rule isequiv_id)
- fix f assume asm: "f: A \<rightarrow> A" show "isequiv f: U i"
- by (derive lems: asm assms homotopic_def isequiv_def compose_def)
+ fix f assume "f: A \<rightarrow> A"
+ with assms(1) assms(1) show "isequiv f: U i" by (rule isequiv_type)
qed (rule assms)
-text "Definition of \<open>idtoeqv\<close>:"
-
-
+section \<open>idtoeqv and the univalence axiom\<close>
+
+definition idtoeqv :: Term
+ where "idtoeqv \<equiv> \<^bold>\<lambda>p. <transport p, ind\<^sub>= (\<lambda>A. <<id, \<^bold>\<lambda>x. refl x>, <id, \<^bold>\<lambda>x. refl x>>) p>"
+
+text "Equal types are equivalent. The proof uses universes."
+
+theorem
+ assumes "A: U i" and "B: U i"
+ shows "idtoeqv: (A =[U i] B) \<rightarrow> A \<simeq> B"
+unfolding idtoeqv_def equivalence_def
+proof
+ fix p assume "p: A =[U i] B"
+ show "<transport p, ind\<^sub>= (\<lambda>A. <<id, \<^bold>\<lambda>x. refl x>, <id, \<^bold>\<lambda>x. refl x>>) p>: \<Sum>f: A \<rightarrow> B. isequiv f"
+ proof
+ { fix f assume "f: A \<rightarrow> B"
+ with assms show "isequiv f: U i" by (rule isequiv_type)
+ }
+
+ show "transport p: A \<rightarrow> B"
+ proof (rule transport_type[where ?P="\<lambda>x. x" and ?A="U i" and ?i="S i"])
+ show "\<And>x. x: U i \<Longrightarrow> x: U S i" by (elim U_cumulative) standard
+ show "U i: U S i" by (rule U_hierarchy) standard
+ qed fact+
+
+ show "ind\<^sub>= (\<lambda>A. <<id, \<^bold>\<lambda>x. refl x>, <id, \<^bold>\<lambda>x. refl x>>) p: isequiv (transport p)"
+ proof (rule Equal_elim[where ?C="\<lambda>_ _ p. isequiv (transport p)"])
+ fix A assume asm: "A: U i"
+ show "<<id, \<^bold>\<lambda>x. refl x>, <id, \<^bold>\<lambda>x. refl x>>: isequiv (transport (refl A))"
+ proof (derive lems: isequiv_def)
+ show "transport (refl A): A \<rightarrow> A"
+ unfolding transport_def
+ by (compute lems: Equal_comp[where ?A="U i" and ?C="\<lambda>_ _ _. A \<rightarrow> A"]) (derive lems: asm)
+
+ show "<<id, \<^bold>\<lambda>x. refl x>, <id, \<^bold>\<lambda>x. refl x>>:
+ (\<Sum>g:A \<rightarrow> A. g \<circ> (transport (refl A)) ~ id) \<times>
+ (\<Sum>g:A \<rightarrow> A. (transport (refl A)) \<circ> g ~ id)"
+ proof (derive lems: asm homotopic_def transport_def)
+ show "id: A \<rightarrow> A" by (routine lems: asm)
end