diff options
| author | Josh Chen | 2018-09-16 11:03:48 +0200 | 
|---|---|---|
| committer | Josh Chen | 2018-09-16 11:03:48 +0200 | 
| commit | d4900ced2e071927d81a21a9127034941f258ec3 (patch) | |
| tree | c0289b3fd8337a05baa7740ca3f5e84c57f539ca /Prod.thy | |
| parent | 515872533295e8464799467303fff923b52a2c01 (diff) | |
| parent | f0999d07a0f41284ba84fae725a0186e0ec9ff5f (diff) | |
Reorganized HoTT_Base, updated theories
Diffstat (limited to 'Prod.thy')
| -rw-r--r-- | Prod.thy | 42 | 
1 files changed, 19 insertions, 23 deletions
| @@ -12,14 +12,14 @@ begin  section \<open>Constants and syntax\<close>  axiomatization -  Prod :: "[Term, Typefam] \<Rightarrow> Term" and -  lambda :: "(Term \<Rightarrow> Term) \<Rightarrow> Term"  (binder "\<^bold>\<lambda>" 30) and -  appl :: "[Term, Term] \<Rightarrow> Term"  (infixl "`" 60) +  Prod :: "[t, tf] \<Rightarrow> t" and +  lambda :: "(t \<Rightarrow> t) \<Rightarrow> t"  (binder "\<^bold>\<lambda>" 30) and +  appl :: "[t, t] \<Rightarrow> t"  (infixl "`" 60)      \<comment> \<open>Application binds tighter than abstraction.\<close>  syntax -  "_PROD" :: "[idt, Term, Term] \<Rightarrow> Term"          ("(3\<Prod>_:_./ _)" 30) -  "_PROD_ASCII" :: "[idt, Term, Term] \<Rightarrow> Term"    ("(3PROD _:_./ _)" 30) +  "_PROD" :: "[idt, t, t] \<Rightarrow> t"          ("(3\<Prod>_:_./ _)" 30) +  "_PROD_ASCII" :: "[idt, t, t] \<Rightarrow> t"    ("(3PROD _:_./ _)" 30)  text "The translations below bind the variable \<open>x\<close> in the expressions \<open>B\<close> and \<open>b\<close>." @@ -29,24 +29,24 @@ translations  text "Nondependent functions are a special case." -abbreviation Function :: "[Term, Term] \<Rightarrow> Term"  (infixr "\<rightarrow>" 40) +abbreviation Function :: "[t, t] \<Rightarrow> t"  (infixr "\<rightarrow>" 40)    where "A \<rightarrow> B \<equiv> \<Prod>_: A. B"  section \<open>Type rules\<close>  axiomatization where -  Prod_form: "\<lbrakk>A: U(i); B: A \<longrightarrow> U(i)\<rbrakk> \<Longrightarrow> \<Prod>x:A. B(x): U(i)" +  Prod_form: "\<lbrakk>A: U i; B: A \<longrightarrow> U i\<rbrakk> \<Longrightarrow> \<Prod>x:A. B x: U i"  and -  Prod_intro: "\<lbrakk>\<And>x. x: A \<Longrightarrow> b(x): B(x); A: U(i)\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>x. b(x): \<Prod>x:A. B(x)" +  Prod_intro: "\<lbrakk>\<And>x. x: A \<Longrightarrow> b x: B x; A: U i\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>x. b x: \<Prod>x:A. B x"  and -  Prod_elim: "\<lbrakk>f: \<Prod>x:A. B(x); a: A\<rbrakk> \<Longrightarrow> f`a: B(a)" +  Prod_elim: "\<lbrakk>f: \<Prod>x:A. B x; a: A\<rbrakk> \<Longrightarrow> f`a: B a"  and -  Prod_appl: "\<lbrakk>\<And>x. x: A \<Longrightarrow> b(x): B(x); a: A\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x. b(x))`a \<equiv> b(a)" +  Prod_appl: "\<lbrakk>\<And>x. x: A \<Longrightarrow> b x: B x; a: A\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x. b x)`a \<equiv> b a"  and -  Prod_uniq: "f : \<Prod>x:A. B(x) \<Longrightarrow> \<^bold>\<lambda>x. (f`x) \<equiv> f" +  Prod_uniq: "f : \<Prod>x:A. B x \<Longrightarrow> \<^bold>\<lambda>x. (f`x) \<equiv> f"  and -  Prod_eq: "\<lbrakk>\<And>x. x: A \<Longrightarrow> b(x) \<equiv> b'(x); A: U(i)\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>x. b(x) \<equiv> \<^bold>\<lambda>x. b'(x)" +  Prod_eq: "\<lbrakk>\<And>x. x: A \<Longrightarrow> b x \<equiv> c x; A: U i\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>x. b x \<equiv> \<^bold>\<lambda>x. c x"  text "    The Pure rules for \<open>\<equiv>\<close> only let us judge strict syntactic equality of object lambda expressions; Prod_eq is the actual definitional equality rule. @@ -55,15 +55,15 @@ text "  "  text " -  In addition to the usual type rules, it is a meta-theorem that whenever \<open>\<Prod>x:A. B x: U(i)\<close> is derivable from some set of premises \<Gamma>, then so are \<open>A: U(i)\<close> and \<open>B: A \<longrightarrow> U(i)\<close>. +  In addition to the usual type rules, it is a meta-theorem that whenever \<open>\<Prod>x:A. B x: U i\<close> is derivable from some set of premises \<Gamma>, then so are \<open>A: U i\<close> and \<open>B: A \<longrightarrow> U i\<close>.    That is to say, the following inference rules are admissible, and it simplifies proofs greatly to axiomatize them directly.  "  axiomatization where -  Prod_wellform1: "(\<Prod>x:A. B(x): U(i)) \<Longrightarrow> A: U(i)" +  Prod_wellform1: "(\<Prod>x:A. B x: U i) \<Longrightarrow> A: U i"  and -  Prod_wellform2: "(\<Prod>x:A. B(x): U(i)) \<Longrightarrow> B: A \<longrightarrow> U(i)" +  Prod_wellform2: "(\<Prod>x:A. B x: U i) \<Longrightarrow> B: A \<longrightarrow> U i"  text "Rule attribute declarations---set up various methods to use the type rules." @@ -75,19 +75,15 @@ lemmas Prod_routine [intro] = Prod_form Prod_intro Prod_elim  section \<open>Function composition\<close> -definition compose :: "[Term, Term] \<Rightarrow> Term"  (infixr "o" 70) where "g o f \<equiv> \<^bold>\<lambda>x. g`(f`x)" +definition compose :: "[t, t] \<Rightarrow> t"  (infixr "o" 110) where "g o f \<equiv> \<^bold>\<lambda>x. g`(f`x)" -syntax "_COMPOSE" :: "[Term, Term] \<Rightarrow> Term"  (infixr "\<circ>" 70) +syntax "_COMPOSE" :: "[t, t] \<Rightarrow> t"  (infixr "\<circ>" 110)  translations "g \<circ> f" \<rightleftharpoons> "g o f" -section \<open>Atomization\<close> +section \<open>Polymorphic identity function\<close> -text " -  Universal statements can be internalized within the theory; the following rule is admissible. -" (* PROOF NEEDED *) - -axiomatization where Prod_atomize: "(\<^bold>\<lambda>x. b(x): \<Prod>x:A. B(x)) \<Longrightarrow> (\<And>x. x: A \<Longrightarrow> b(x): B(x))" +abbreviation id :: t where "id \<equiv> \<^bold>\<lambda>x. x"  end | 
