aboutsummaryrefslogtreecommitdiff
path: root/HoTT_Theorems.thy
diff options
context:
space:
mode:
authorJosh Chen2018-08-16 16:28:50 +0200
committerJosh Chen2018-08-16 16:28:50 +0200
commitd8699451025a3bd5e8955e07fa879ed248418949 (patch)
tree46d09c26febb5617425565b0ac131b984f3b9c08 /HoTT_Theorems.thy
parent3794a2bc395264265d17243b5b707b9ed993d939 (diff)
Some comments and reorganization
Diffstat (limited to 'HoTT_Theorems.thy')
-rw-r--r--HoTT_Theorems.thy206
1 files changed, 0 insertions, 206 deletions
diff --git a/HoTT_Theorems.thy b/HoTT_Theorems.thy
deleted file mode 100644
index 79614d3..0000000
--- a/HoTT_Theorems.thy
+++ /dev/null
@@ -1,206 +0,0 @@
-theory HoTT_Theorems
- imports HoTT
-begin
-
-text "A bunch of theorems and other statements for sanity-checking, as well as things that should be automatically simplified.
-
-Things that *should* be automated:
- \<bullet> Checking that \<open>A\<close> is a well-formed type, when writing things like \<open>x : A\<close> and \<open>A : U\<close>.
- \<bullet> Checking that the argument to a (dependent/non-dependent) function matches the type? Also the arguments to a pair?"
-
-\<comment> \<open>Turn on trace for unification and the simplifier, for debugging.\<close>
-declare[[unify_trace_simp, unify_trace_types, simp_trace, simp_trace_depth_limit=5]]
-
-section \<open>\<Prod> type\<close>
-
-subsection \<open>Typing functions\<close>
-
-text "Declaring \<open>Prod_intro\<close> with the \<open>intro\<close> attribute (in HoTT.thy) enables \<open>standard\<close> to prove the following."
-
-proposition assumes "A : U" shows "\<^bold>\<lambda>x:A. x : A\<rightarrow>A" using assms ..
-
-proposition
- assumes "A : U" and "A \<equiv> B"
- shows "\<^bold>\<lambda>x:A. x : B\<rightarrow>A"
-proof -
- have "A\<rightarrow>A \<equiv> B\<rightarrow>A" using assms by simp
- moreover have "\<^bold>\<lambda>x:A. x : A\<rightarrow>A" using assms(1) ..
- ultimately show "\<^bold>\<lambda>x:A. x : B\<rightarrow>A" by simp
-qed
-
-proposition
- assumes "A : U" and "B : U"
- shows "\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B. x : A\<rightarrow>B\<rightarrow>A"
-proof
- fix x
- assume "x : A"
- with assms(2) show "\<^bold>\<lambda>y:B. x : B\<rightarrow>A" ..
-qed (rule assms)
-
-
-subsection \<open>Function application\<close>
-
-proposition assumes "a : A" shows "(\<^bold>\<lambda>x:A. x)`a \<equiv> a" using assms by simp
-
-text "Currying:"
-
-lemma
- assumes "a : A"
- shows "(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). y)`a \<equiv> \<^bold>\<lambda>y:B(a). y"
-proof
- show "\<And>x. a : A \<Longrightarrow> x : A \<Longrightarrow> \<^bold>\<lambda>y:B x. y : B x \<rightarrow> B x"
-
-lemma "\<lbrakk>a : A; b : B\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). y)`a`b \<equiv> b" by simp
-
-lemma "a : A \<Longrightarrow> (\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). f x y)`a \<equiv> \<^bold>\<lambda>y:B(a). f a y" by simp
-
-lemma "\<lbrakk>a : A; b : B(a); c : C(a)(b)\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). \<^bold>\<lambda>z:C(x)(y). f x y z)`a`b`c \<equiv> f a b c" by simp
-
-
-subsection \<open>Currying functions\<close>
-
-proposition curried_function_formation:
- fixes
- A::Term and
- B::"Term \<Rightarrow> Term" and
- C::"Term \<Rightarrow> Term \<Rightarrow> Term"
- assumes
- "A : U" and
- "B: A \<rightarrow> U" and
- "\<And>x::Term. C(x): B(x) \<rightarrow> U"
- shows "\<Prod>x:A. \<Prod>y:B(x). C x y : U"
-proof
- fix x::Term
- assume *: "x : A"
- show "\<Prod>y:B(x). C x y : U"
- proof
- show "B(x) : U" using * by (rule assms)
- qed (rule assms)
-qed (rule assms)
-
-(**** GOOD CANDIDATE FOR AUTOMATION - EISBACH! ****)
-proposition higher_order_currying_formation:
- fixes
- A::Term and
- B::"Term \<Rightarrow> Term" and
- C::"[Term, Term] \<Rightarrow> Term" and
- D::"[Term, Term, Term] \<Rightarrow> Term"
- assumes
- "A : U" and
- "B: A \<rightarrow> U" and
- "\<And>x y::Term. y : B(x) \<Longrightarrow> C(x)(y) : U" and
- "\<And>x y z::Term. z : C(x)(y) \<Longrightarrow> D(x)(y)(z) : U"
- shows "\<Prod>x:A. \<Prod>y:B(x). \<Prod>z:C(x)(y). D(x)(y)(z) : U"
-proof
- fix x::Term assume 1: "x : A"
- show "\<Prod>y:B(x). \<Prod>z:C(x)(y). D(x)(y)(z) : U"
- proof
- show "B(x) : U" using 1 by (rule assms)
-
- fix y::Term assume 2: "y : B(x)"
- show "\<Prod>z:C(x)(y). D(x)(y)(z) : U"
- proof
- show "C x y : U" using 2 by (rule assms)
- show "\<And>z::Term. z : C(x)(y) \<Longrightarrow> D(x)(y)(z) : U" by (rule assms)
- qed
- qed
-qed (rule assms)
-
-(**** AND PROBABLY THIS TOO? ****)
-lemma curried_type_judgment:
- fixes
- a b A::Term and
- B::"Term \<Rightarrow> Term" and
- f C::"[Term, Term] \<Rightarrow> Term"
- assumes "\<And>x y::Term. \<lbrakk>x : A; y : B(x)\<rbrakk> \<Longrightarrow> f x y : C x y"
- shows "\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). f x y : \<Prod>x:A. \<Prod>y:B(x). C x y"
-proof
- fix x::Term
- assume *: "x : A"
- show "\<^bold>\<lambda>y:B(x). f x y : \<Prod>y:B(x). C x y"
- proof
- fix y::Term
- assume **: "y : B(x)"
- show "f x y : C x y" using * ** by (rule assms)
- qed
-qed
-
-text "Note that the propositions and proofs above often say nothing about the well-formedness of the types, or the well-typedness of the lambdas involved; one has to be very explicit and prove such things separately!
-This is the result of the choices made regarding the premises of the type rules."
-
-
-section \<open>\<Sum> type\<close>
-
-text "The following shows that the dependent sum inductor has the type we expect it to have:"
-
-lemma
- assumes "C: \<Sum>x:A. B(x) \<rightarrow> U"
- shows "indSum(C) : \<Prod>f:(\<Prod>x:A. \<Prod>y:B(x). C((x,y))). \<Prod>p:(\<Sum>x:A. B(x)). C(p)"
-proof -
- define F and P where
- "F \<equiv> \<Prod>x:A. \<Prod>y:B(x). C((x,y))" and
- "P \<equiv> \<Sum>x:A. B(x)"
-
- have "\<^bold>\<lambda>f:F. \<^bold>\<lambda>p:P. indSum(C)`f`p : \<Prod>f:F. \<Prod>p:P. C(p)"
- proof (rule curried_type_judgment)
- fix f p::Term
- assume "f : F" and "p : P"
- with assms show "indSum(C)`f`p : C(p)" unfolding F_def P_def ..
- qed
-
- then show "indSum(C) : \<Prod>f:F. \<Prod>p:P. C(p)" by simp
-qed
-
-(**** AUTOMATION CANDIDATE ****)
-text "Propositional uniqueness principle for dependent sums:"
-
-text "We would like to eventually automate proving that 'a given type \<open>A\<close> is inhabited', i.e. search for an element \<open>a:A\<close>.
-
-A good starting point would be to automate the application of elimination rules."
-
-notepad begin
-
-fix A B assume "A : U" and "B: A \<rightarrow> U"
-
-define C where "C \<equiv> \<lambda>p. p =[\<Sum>x:A. B(x)] (fst[A,B]`p, snd[A,B]`p)"
-have *: "C: \<Sum>x:A. B(x) \<rightarrow> U"
-proof -
- fix p assume "p : \<Sum>x:A. B(x)"
- have "(fst[A,B]`p, snd[A,B]`p) : \<Sum>x:A. B(x)"
-
-define f where "f \<equiv> \<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). refl((x,y))"
-have "f`x`y : C((x,y))"
-sorry
-
-have "p : \<Sum>x:A. B(x) \<Longrightarrow> indSum(C)`f`p : C(p)" using * ** by (rule Sum_elim)
-
-end
-
-section \<open>Universes and polymorphism\<close>
-
-text "Polymorphic identity function."
-
-consts Ui::Term
-
-definition Id where "Id \<equiv> \<^bold>\<lambda>A:Ui. \<^bold>\<lambda>x:A. x"
-
-
-(*
-section \<open>Natural numbers\<close>
-
-text "Here's a dumb proof that 2 is a natural number."
-
-proposition "succ(succ 0) : Nat"
- proof -
- have "0 : Nat" by (rule Nat_intro1)
- from this have "(succ 0) : Nat" by (rule Nat_intro2)
- thus "succ(succ 0) : Nat" by (rule Nat_intro2)
- qed
-
-text "We can of course iterate the above for as many applications of \<open>succ\<close> as we like.
-The next thing to do is to implement induction to automate such proofs.
-
-When we get more stuff working, I'd like to aim for formalizing the encode-decode method to be able to prove the only naturals are 0 and those obtained from it by \<open>succ\<close>."
-*)
-
-end