diff options
author | Josh Chen | 2018-09-19 15:07:05 +0200 |
---|---|---|
committer | Josh Chen | 2018-09-19 15:07:05 +0200 |
commit | 24a0d9c9f72b54151f87332334f8ac488658351c (patch) | |
tree | f857ddd4128b582a7ab61b6e06bbc28a463d83f4 /EqualProps.thy | |
parent | 150f7eb27880a0081b8ec86d775dd626f507e779 (diff) |
Renaming
Diffstat (limited to 'EqualProps.thy')
-rw-r--r-- | EqualProps.thy | 177 |
1 files changed, 0 insertions, 177 deletions
diff --git a/EqualProps.thy b/EqualProps.thy deleted file mode 100644 index 847d964..0000000 --- a/EqualProps.thy +++ /dev/null @@ -1,177 +0,0 @@ -(* -Title: EqualProps.thy -Author: Joshua Chen -Date: 2018 - -Properties of equality -*) - -theory EqualProps -imports HoTT_Methods Equal Prod - -begin - - -section \<open>Symmetry of equality/Path inverse\<close> - -definition inv :: "t \<Rightarrow> t" ("_\<inverse>" [1000] 1000) where "p\<inverse> \<equiv> ind\<^sub>= (\<lambda>x. refl x) p" - -lemma inv_type: "\<lbrakk>A: U i; x: A; y: A; p: x =\<^sub>A y\<rbrakk> \<Longrightarrow> p\<inverse>: y =\<^sub>A x" -unfolding inv_def by (elim Equal_elim) routine - -lemma inv_comp: "\<lbrakk>A: U i; a: A\<rbrakk> \<Longrightarrow> (refl a)\<inverse> \<equiv> refl a" -unfolding inv_def by compute routine - -declare - inv_type [intro] - inv_comp [comp] - - -section \<open>Transitivity of equality/Path composition\<close> - -text \<open> -Composition function, of type @{term "x =\<^sub>A y \<rightarrow> (y =\<^sub>A z) \<rightarrow> (x =\<^sub>A z)"} polymorphic over @{term A}, @{term x}, @{term y}, and @{term z}. -\<close> - -definition pathcomp :: t where "pathcomp \<equiv> \<^bold>\<lambda>p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>q. ind\<^sub>= (\<lambda>x. (refl x)) q) p" - -syntax "_pathcomp" :: "[t, t] \<Rightarrow> t" (infixl "\<bullet>" 120) -translations "p \<bullet> q" \<rightleftharpoons> "CONST pathcomp`p`q" - -lemma pathcomp_type: - assumes "A: U i" "x: A" "y: A" "z: A" - shows "pathcomp: x =\<^sub>A y \<rightarrow> (y =\<^sub>A z) \<rightarrow> (x =\<^sub>A z)" -unfolding pathcomp_def by rule (elim Equal_elim, routine add: assms) - -corollary pathcomp_trans: - assumes "A: U i" and "x: A" "y: A" "z: A" and "p: x =\<^sub>A y" "q: y =\<^sub>A z" - shows "p \<bullet> q: x =\<^sub>A z" -by (routine add: assms pathcomp_type) - -lemma pathcomp_comp: - assumes "A: U i" and "a: A" - shows "(refl a) \<bullet> (refl a) \<equiv> refl a" -unfolding pathcomp_def proof compute - show "(ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>q. ind\<^sub>= (\<lambda>x. refl x) q) (refl a))`(refl a) \<equiv> refl a" - proof compute - show "\<^bold>\<lambda>q. (ind\<^sub>= (\<lambda>x. refl x) q): a =\<^sub>A a \<rightarrow> a =\<^sub>A a" - by (routine add: assms) - - show "(\<^bold>\<lambda>q. (ind\<^sub>= (\<lambda>x. refl x) q))`(refl a) \<equiv> refl a" - proof compute - show "\<And>q. q: a =\<^sub>A a \<Longrightarrow> ind\<^sub>= (\<lambda>x. refl x) q: a =\<^sub>A a" by (routine add: assms) - qed (derive lems: assms) - qed (routine add: assms) - - show "\<And>p. p: a =\<^sub>A a \<Longrightarrow> ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>q. ind\<^sub>= (\<lambda>x. refl x) q) p: a =\<^sub>A a \<rightarrow> a =\<^sub>A a" - by (routine add: assms) -qed (routine add: assms) - -declare - pathcomp_type [intro] - pathcomp_trans [intro] - pathcomp_comp [comp] - - -section \<open>Higher groupoid structure of types\<close> - -schematic_goal pathcomp_right_id: - assumes "A: U(i)" "x: A" "y: A" "p: x =\<^sub>A y" - shows "?a: p \<bullet> (refl y) =[x =\<^sub>A y] p" -proof (rule Equal_elim[where ?x=x and ?y=y and ?p=p]) \<comment> \<open>@{method elim} does not seem to work with schematic goals.\<close> - show "\<And>x. x: A \<Longrightarrow> refl(refl x): (refl x) \<bullet> (refl x) =[x =\<^sub>A x] (refl x)" - by (derive lems: assms) -qed (routine add: assms) - -schematic_goal pathcomp_left_id: - assumes "A: U(i)" "x: A" "y: A" "p: x =\<^sub>A y" - shows "?a: (refl x) \<bullet> p =[x =\<^sub>A y] p" -proof (rule Equal_elim[where ?x=x and ?y=y and ?p=p]) - show "\<And>x. x: A \<Longrightarrow> refl(refl x): (refl x) \<bullet> (refl x) =[x =\<^sub>A x] (refl x)" - by (derive lems: assms) -qed (routine add: assms) - -schematic_goal pathcomp_left_inv: - assumes "A: U(i)" "x: A" "y: A" "p: x =\<^sub>A y" - shows "?a: (p\<inverse> \<bullet> p) =[y =\<^sub>A y] refl(y)" -proof (rule Equal_elim[where ?x=x and ?y=y and ?p=p]) - show "\<And>x. x: A \<Longrightarrow> refl(refl x): (refl x)\<inverse> \<bullet> (refl x) =[x =\<^sub>A x] (refl x)" - by (derive lems: assms) -qed (routine add: assms) - -schematic_goal pathcomp_right_inv: - assumes "A: U(i)" "x: A" "y: A" "p: x =\<^sub>A y" - shows "?a: (p \<bullet> p\<inverse>) =[x =\<^sub>A x] refl(x)" -proof (rule Equal_elim[where ?x=x and ?y=y and ?p=p]) - show "\<And>x. x: A \<Longrightarrow> refl(refl x): (refl x) \<bullet> (refl x)\<inverse> =[x =\<^sub>A x] (refl x)" - by (derive lems: assms) -qed (routine add: assms) - -schematic_goal inv_involutive: - assumes "A: U(i)" "x: A" "y: A" "p: x =\<^sub>A y" - shows "?a: p\<inverse>\<inverse> =[x =\<^sub>A y] p" -proof (rule Equal_elim[where ?x=x and ?y=y and ?p=p]) - show "\<And>x. x: A \<Longrightarrow> refl(refl x): (refl x)\<inverse>\<inverse> =[x =\<^sub>A x] (refl x)" - by (derive lems: assms) -qed (routine add: assms) - -text \<open>All of the propositions above have the same proof term, which we abbreviate here.\<close> -abbreviation \<iota> :: "t \<Rightarrow> t" where "\<iota> p \<equiv> ind\<^sub>= (\<lambda>x. refl (refl x)) p" - -text \<open>The next proof has a triply-nested path induction.\<close> - -lemma pathcomp_assoc: - assumes "A: U i" "x: A" "y: A" "z: A" "w: A" - shows "\<^bold>\<lambda>p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>q. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>r. \<iota> r) q) p: - \<Prod>p: x =\<^sub>A y. \<Prod>q: y =\<^sub>A z. \<Prod>r: z =\<^sub>A w. p \<bullet> (q \<bullet> r) =[x =\<^sub>A w] (p \<bullet> q) \<bullet> r" -proof - show "\<And>p. p: x =\<^sub>A y \<Longrightarrow> ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>q. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>r. \<iota> r) q) p: - \<Prod>q: y =\<^sub>A z. \<Prod>r: z =\<^sub>A w. p \<bullet> (q \<bullet> r) =[x =\<^sub>A w] p \<bullet> q \<bullet> r" - proof (elim Equal_elim) - fix x assume 1: "x: A" - show "\<^bold>\<lambda>q. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>r. \<iota> r) q: - \<Prod>q: x =\<^sub>A z. \<Prod>r: z =\<^sub>A w. refl x \<bullet> (q \<bullet> r) =[x =\<^sub>A w] refl x \<bullet> q \<bullet> r" - proof - show "\<And>q. q: x =\<^sub>A z \<Longrightarrow> ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>r. \<iota> r) q: - \<Prod>r: z =\<^sub>A w. refl x \<bullet> (q \<bullet> r) =[x =\<^sub>A w] refl x \<bullet> q \<bullet> r" - proof (elim Equal_elim) - fix x assume *: "x: A" - show "\<^bold>\<lambda>r. \<iota> r: \<Prod>r: x =\<^sub>A w. refl x \<bullet> (refl x \<bullet> r) =[x =\<^sub>A w] refl x \<bullet> refl x \<bullet> r" - proof - show "\<And>r. r: x =[A] w \<Longrightarrow> \<iota> r: refl x \<bullet> (refl x \<bullet> r) =[x =[A] w] refl x \<bullet> refl x \<bullet> r" - by (elim Equal_elim, derive lems: * assms) - qed (routine add: * assms) - qed (routine add: 1 assms) - qed (routine add: 1 assms) - - text \<open> - In the following part @{method derive} fails to obtain the correct subgoals, so we have to prove the statement manually. - \<close> - fix y p assume 2: "y: A" "p: x =\<^sub>A y" - show "\<Prod>q: y =\<^sub>A z. \<Prod>r: z =\<^sub>A w. p \<bullet> (q \<bullet> r) =[x =\<^sub>A w] p \<bullet> q \<bullet> r: U i" - proof (routine add: assms) - fix q assume 3: "q: y =\<^sub>A z" - show "\<Prod>r: z =\<^sub>A w. p \<bullet> (q \<bullet> r) =[x =\<^sub>A w] p \<bullet> q \<bullet> r: U i" - proof (routine add: assms) - show "\<And>r. r: z =[A] w \<Longrightarrow> p \<bullet> (q \<bullet> r): x =[A] w" and "\<And>r. r: z =[A] w \<Longrightarrow> p \<bullet> q \<bullet> r: x =[A] w" - by (routine add: 1 2 3 assms) - qed (routine add: 1 assms) - qed fact+ - qed fact+ -qed (routine add: assms) - - -section \<open>Transport\<close> - -definition transport :: "t \<Rightarrow> t" where "transport p \<equiv> ind\<^sub>= (\<lambda>_. (\<^bold>\<lambda>x. x)) p" - -text \<open>Note that @{term transport} is a polymorphic function in our formulation.\<close> - -lemma transport_type: "\<lbrakk>p: x =\<^sub>A y; x: A; y: A; A: U i; P: A \<longrightarrow> U i\<rbrakk> \<Longrightarrow> transport p: P x \<rightarrow> P y" -unfolding transport_def by (elim Equal_elim) routine - -lemma transport_comp: "\<lbrakk>A: U i; x: A\<rbrakk> \<Longrightarrow> transport (refl x) \<equiv> id" -unfolding transport_def by derive - - -end |