aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJosh Chen2018-09-18 11:39:40 +0200
committerJosh Chen2018-09-18 11:39:40 +0200
commita9588dfbd929fbc1b53a5c9b4f41fc5eb4ed4e46 (patch)
treeef21f4328214618f98ee465e92fb3308dfb786da
parenta2bb39ee8002eccc04b0cdaa82143840e6ec2565 (diff)
parent6857e783fa5cb91f058be322a18fb9ea583f2aad (diff)
Merge branch 'develop', ready for release 0.1.0
-rw-r--r--Coprod.thy67
-rw-r--r--Empty.thy25
-rw-r--r--Equal.thy58
-rw-r--r--EqualProps.thy361
-rw-r--r--HoTT.thy18
-rw-r--r--HoTT_Base.thy111
-rw-r--r--HoTT_Methods.thy79
-rw-r--r--Nat.thy63
-rw-r--r--Prod.thy106
-rw-r--r--ProdProps.thy57
-rw-r--r--Proj.thy59
-rw-r--r--Sum.thy62
-rw-r--r--Unit.thy33
-rw-r--r--Univalence.thy195
-rw-r--r--ex/HoTT book/Ch1.thy47
-rw-r--r--ex/Methods.thy73
-rw-r--r--ex/Synthesis.thy94
-rw-r--r--tests/Subgoal.thy63
-rw-r--r--tests/Test.thy105
19 files changed, 588 insertions, 1088 deletions
diff --git a/Coprod.thy b/Coprod.thy
index 1ff7361..431e103 100644
--- a/Coprod.thy
+++ b/Coprod.thy
@@ -1,65 +1,50 @@
-(* Title: HoTT/Coprod.thy
- Author: Josh Chen
+(*
+Title: Coprod.thy
+Author: Joshua Chen
+Date: 2018
Coproduct type
*)
theory Coprod
- imports HoTT_Base
-begin
+imports HoTT_Base
+begin
-section \<open>Constants and type rules\<close>
axiomatization
- Coprod :: "[Term, Term] \<Rightarrow> Term" (infixr "+" 50) and
- inl :: "Term \<Rightarrow> Term" and
- inr :: "Term \<Rightarrow> Term" and
- indCoprod :: "[Term \<Rightarrow> Term, Term \<Rightarrow> Term, Term] \<Rightarrow> Term" ("(1ind\<^sub>+)")
+ Coprod :: "[t, t] \<Rightarrow> t" (infixr "+" 50) and
+ inl :: "t \<Rightarrow> t" and
+ inr :: "t \<Rightarrow> t" and
+ indCoprod :: "[t \<Rightarrow> t, t \<Rightarrow> t, t] \<Rightarrow> t" ("(1ind\<^sub>+)")
where
- Coprod_form: "\<lbrakk>A: U i; B: U i\<rbrakk> \<Longrightarrow> A + B: U i"
-and
- Coprod_intro_inl: "\<lbrakk>a: A; B: U i\<rbrakk> \<Longrightarrow> inl a: A + B"
-and
- Coprod_intro_inr: "\<lbrakk>b: B; A: U i\<rbrakk> \<Longrightarrow> inr b: A + B"
-and
+ Coprod_form: "\<lbrakk>A: U i; B: U i\<rbrakk> \<Longrightarrow> A + B: U i" and
+
+ Coprod_intro_inl: "\<lbrakk>a: A; B: U i\<rbrakk> \<Longrightarrow> inl a: A + B" and
+
+ Coprod_intro_inr: "\<lbrakk>b: B; A: U i\<rbrakk> \<Longrightarrow> inr b: A + B" and
+
Coprod_elim: "\<lbrakk>
+ u: A + B;
C: A + B \<longrightarrow> U i;
\<And>x. x: A \<Longrightarrow> c x: C (inl x);
- \<And>y. y: B \<Longrightarrow> d y: C (inr y);
- u: A + B
- \<rbrakk> \<Longrightarrow> ind\<^sub>+ c d u: C u"
-and
+ \<And>y. y: B \<Longrightarrow> d y: C (inr y) \<rbrakk> \<Longrightarrow> ind\<^sub>+ (\<lambda> x. c x) (\<lambda>y. d y) u: C u" and
+
Coprod_comp_inl: "\<lbrakk>
+ a: A;
C: A + B \<longrightarrow> U i;
\<And>x. x: A \<Longrightarrow> c x: C (inl x);
- \<And>y. y: B \<Longrightarrow> d y: C (inr y);
- a: A
- \<rbrakk> \<Longrightarrow> ind\<^sub>+ c d (inl a) \<equiv> c a"
-and
+ \<And>y. y: B \<Longrightarrow> d y: C (inr y) \<rbrakk> \<Longrightarrow> ind\<^sub>+ (\<lambda>x. c x) (\<lambda>y. d y) (inl a) \<equiv> c a" and
+
Coprod_comp_inr: "\<lbrakk>
+ b: B;
C: A + B \<longrightarrow> U i;
\<And>x. x: A \<Longrightarrow> c x: C (inl x);
- \<And>y. y: B \<Longrightarrow> d y: C (inr y);
- b: B
- \<rbrakk> \<Longrightarrow> ind\<^sub>+ c d (inr b) \<equiv> d b"
-
-
-text "Admissible formation inference rules:"
-
-axiomatization where
- Coprod_wellform1: "A + B: U i \<Longrightarrow> A: U i"
-and
- Coprod_wellform2: "A + B: U i \<Longrightarrow> B: U i"
-
-
-text "Rule attribute declarations:"
-
-lemmas Coprod_intro = Coprod_intro_inl Coprod_intro_inr
+ \<And>y. y: B \<Longrightarrow> d y: C (inr y) \<rbrakk> \<Longrightarrow> ind\<^sub>+ (\<lambda>x. c x) (\<lambda>y. d y) (inr b) \<equiv> d b"
+lemmas Coprod_form [form]
+lemmas Coprod_routine [intro] = Coprod_form Coprod_intro_inl Coprod_intro_inr Coprod_elim
lemmas Coprod_comp [comp] = Coprod_comp_inl Coprod_comp_inr
-lemmas Coprod_wellform [wellform] = Coprod_wellform1 Coprod_wellform2
-lemmas Coprod_routine [intro] = Coprod_form Coprod_intro Coprod_elim
end
diff --git a/Empty.thy b/Empty.thy
index a42f7ff..ee11045 100644
--- a/Empty.thy
+++ b/Empty.thy
@@ -1,29 +1,26 @@
-(* Title: HoTT/Empty.thy
- Author: Josh Chen
+(*
+Title: Empty.thy
+Author: Joshua Chen
+Date: 2018
Empty type
*)
theory Empty
- imports HoTT_Base
-begin
-
+imports HoTT_Base
-section \<open>Constants and type rules\<close>
+begin
-section \<open>Empty type\<close>
axiomatization
- Empty :: Term ("\<zero>") and
- indEmpty :: "Term \<Rightarrow> Term" ("(1ind\<^sub>\<zero>)")
+ Empty :: t ("\<zero>") and
+ indEmpty :: "t \<Rightarrow> t" ("(1ind\<^sub>\<zero>)")
where
- Empty_form: "\<zero>: U O"
-and
- Empty_elim: "\<lbrakk>C: \<zero> \<longrightarrow> U i; z: \<zero>\<rbrakk> \<Longrightarrow> ind\<^sub>\<zero> z: C z"
-
+ Empty_form: "\<zero>: U O" and
-text "Rule attribute declarations:"
+ Empty_elim: "\<lbrakk>a: \<zero>; C: \<zero> \<longrightarrow> U i\<rbrakk> \<Longrightarrow> ind\<^sub>\<zero> a: C a"
+lemmas Empty_form [form]
lemmas Empty_routine [intro] = Empty_form Empty_elim
diff --git a/Equal.thy b/Equal.thy
index 7254104..19e3939 100644
--- a/Equal.thy
+++ b/Equal.thy
@@ -1,66 +1,52 @@
-(* Title: HoTT/Equal.thy
- Author: Josh Chen
+(*
+Title: Equal.thy
+Author: Joshua Chen
+Date: 2018
Equality type
*)
theory Equal
- imports HoTT_Base
+imports HoTT_Base
+
begin
-section \<open>Constants and syntax\<close>
+section \<open>Basic definitions\<close>
axiomatization
- Equal :: "[Term, Term, Term] \<Rightarrow> Term" and
- refl :: "Term \<Rightarrow> Term" and
- indEqual :: "[Term \<Rightarrow> Term, Term] \<Rightarrow> Term" ("(1ind\<^sub>=)")
+ Equal :: "[t, t, t] \<Rightarrow> t" and
+ refl :: "t \<Rightarrow> t" and
+ indEqual :: "[t \<Rightarrow> t, t] \<Rightarrow> t" ("(1ind\<^sub>=)")
syntax
- "_EQUAL" :: "[Term, Term, Term] \<Rightarrow> Term" ("(3_ =\<^sub>_/ _)" [101, 0, 101] 100)
- "_EQUAL_ASCII" :: "[Term, Term, Term] \<Rightarrow> Term" ("(3_ =[_]/ _)" [101, 0, 101] 100)
+ "_equal" :: "[t, t, t] \<Rightarrow> t" ("(3_ =\<^sub>_/ _)" [101, 0, 101] 100)
+ "_equal_ascii" :: "[t, t, t] \<Rightarrow> t" ("(3_ =[_]/ _)" [101, 0, 101] 100)
+
translations
"a =[A] b" \<rightleftharpoons> "CONST Equal A a b"
"a =\<^sub>A b" \<rightharpoonup> "CONST Equal A a b"
+axiomatization where
+ Equal_form: "\<lbrakk>A: U i; a: A; b: A\<rbrakk> \<Longrightarrow> a =\<^sub>A b : U i" and
-section \<open>Type rules\<close>
+ Equal_intro: "a : A \<Longrightarrow> (refl a): a =\<^sub>A a" and
-axiomatization where
- Equal_form: "\<lbrakk>A: U i; a: A; b: A\<rbrakk> \<Longrightarrow> a =\<^sub>A b : U i"
-and
- Equal_intro: "a : A \<Longrightarrow> (refl a): a =\<^sub>A a"
-and
Equal_elim: "\<lbrakk>
+ p: x =\<^sub>A y;
x: A;
y: A;
- p: x =\<^sub>A y;
\<And>x. x: A \<Longrightarrow> f x: C x x (refl x);
- \<And>x y. \<lbrakk>x: A; y: A\<rbrakk> \<Longrightarrow> C x y: x =\<^sub>A y \<longrightarrow> U i
- \<rbrakk> \<Longrightarrow> ind\<^sub>= f p : C x y p"
-and
+ \<And>x y. \<lbrakk>x: A; y: A\<rbrakk> \<Longrightarrow> C x y: x =\<^sub>A y \<longrightarrow> U i \<rbrakk> \<Longrightarrow> ind\<^sub>= (\<lambda>x. f x) p : C x y p" and
+
Equal_comp: "\<lbrakk>
a: A;
\<And>x. x: A \<Longrightarrow> f x: C x x (refl x);
- \<And>x y. \<lbrakk>x: A; y: A\<rbrakk> \<Longrightarrow> C x y: x =\<^sub>A y \<longrightarrow> U i
- \<rbrakk> \<Longrightarrow> ind\<^sub>= f (refl a) \<equiv> f a"
-
+ \<And>x y. \<lbrakk>x: A; y: A\<rbrakk> \<Longrightarrow> C x y: x =\<^sub>A y \<longrightarrow> U i \<rbrakk> \<Longrightarrow> ind\<^sub>= (\<lambda>x. f x) (refl a) \<equiv> f a"
-text "Admissible inference rules for equality type formation:"
-
-axiomatization where
- Equal_wellform1: "a =\<^sub>A b: U i \<Longrightarrow> A: U i"
-and
- Equal_wellform2: "a =\<^sub>A b: U i \<Longrightarrow> a: A"
-and
- Equal_wellform3: "a =\<^sub>A b: U i \<Longrightarrow> b: A"
-
-
-text "Rule attribute declarations:"
-
-lemmas Equal_comp [comp]
-lemmas Equal_wellform [wellform] = Equal_wellform1 Equal_wellform2 Equal_wellform3
+lemmas Equal_form [form]
lemmas Equal_routine [intro] = Equal_form Equal_intro Equal_elim
+lemmas Equal_comp [comp]
end
diff --git a/EqualProps.thy b/EqualProps.thy
index 5db8487..abb2623 100644
--- a/EqualProps.thy
+++ b/EqualProps.thy
@@ -1,298 +1,137 @@
-(* Title: HoTT/EqualProps.thy
- Author: Josh Chen
+(*
+Title: EqualProps.thy
+Author: Joshua Chen
+Date: 2018
Properties of equality
*)
theory EqualProps
- imports
- HoTT_Methods
- Equal
- Prod
-begin
-
-
-section \<open>Symmetry / Path inverse\<close>
-
-definition inv :: "Term \<Rightarrow> Term" ("_\<inverse>" [1000] 1000) where "p\<inverse> \<equiv> ind\<^sub>= (\<lambda>x. (refl x)) p"
-
-text "
- In the proof below we begin by using path induction on \<open>p\<close> with the application of \<open>rule Equal_elim\<close>, telling Isabelle the specific substitutions to use.
- The proof is finished with a standard application of the relevant type rules.
-"
-
-lemma inv_type:
- assumes "A : U i" and "x : A" and "y : A" and "p: x =\<^sub>A y" shows "p\<inverse>: y =\<^sub>A x"
-unfolding inv_def
-by (rule Equal_elim[where ?x=x and ?y=y]) (routine lems: assms)
- \<comment> \<open>The type doesn't depend on \<open>p\<close> so we don't need to specify \<open>?p\<close> in the \<open>where\<close> clause above.\<close>
-
-text "
- The next proof requires explicitly telling Isabelle what to substitute on the RHS of the typing judgment after the initial application of the type rules.
- (If viewing this inside Isabelle, place the cursor after the \<open>proof\<close> statement and observe the second subgoal.)
-"
-
-lemma inv_comp:
- assumes "A : U i " and "a : A" shows "(refl a)\<inverse> \<equiv> refl a"
-unfolding inv_def
-proof compute
- show "\<And>x. x: A \<Longrightarrow> refl x: x =\<^sub>A x" ..
-qed (routine lems: assms)
-
-
-section \<open>Transitivity / Path composition\<close>
-
-text "
- Raw composition function, of type \<open>\<Prod>x:A. \<Prod>y:A. x =\<^sub>A y \<rightarrow> (\<Prod>z:A. y =\<^sub>A z \<rightarrow> x =\<^sub>A z)\<close> polymorphic over the type \<open>A\<close>.
-"
-
-definition rpathcomp :: Term where "rpathcomp \<equiv> \<^bold>\<lambda>_ _ p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>_ q. ind\<^sub>= (\<lambda>x. (refl x)) q) p"
-
-text "
- More complicated proofs---the nested path inductions require more explicit step-by-step rule applications:
-"
-
-lemma rpathcomp_type:
- assumes "A: U i"
- shows "rpathcomp: \<Prod>x:A. \<Prod>y:A. x =\<^sub>A y \<rightarrow> (\<Prod>z:A. y =\<^sub>A z \<rightarrow> x =\<^sub>A z)"
-unfolding rpathcomp_def
-proof
- fix x assume 1: "x: A"
- show "\<^bold>\<lambda>y p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q) p: \<Prod>y:A. x =\<^sub>A y \<rightarrow> (\<Prod>z:A. y =\<^sub>A z \<rightarrow> x =\<^sub>A z)"
- proof
- fix y assume 2: "y: A"
- show "\<^bold>\<lambda>p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q) p: x =\<^sub>A y \<rightarrow> (\<Prod>z:A. y =\<^sub>A z \<rightarrow> x =\<^sub>A z)"
- proof
- fix p assume 3: "p: x =\<^sub>A y"
- show "ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q) p: \<Prod>z:A. y =\<^sub>A z \<rightarrow> x =\<^sub>A z"
- proof (rule Equal_elim[where ?x=x and ?y=y])
- show "\<And>u. u: A \<Longrightarrow> \<^bold>\<lambda>z q. ind\<^sub>= refl q: \<Prod>z:A. u =\<^sub>A z \<rightarrow> u =\<^sub>A z"
- proof
- show "\<And>u z. \<lbrakk>u: A; z: A\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>q. ind\<^sub>= refl q: u =\<^sub>A z \<rightarrow> u =\<^sub>A z"
- proof
- fix u z q assume asm: "u: A" "z: A" "q: u =\<^sub>A z"
- show "ind\<^sub>= refl q: u =\<^sub>A z"
- by (rule Equal_elim[where ?x=u and ?y=z]) (routine lems: assms asm)
- qed (routine lems: assms)
- qed (rule assms)
- qed (routine lems: assms 1 2 3)
- qed (routine lems: assms 1 2)
- qed (rule assms)
-qed fact
-
-corollary
- assumes "A: U i" "x: A" "y: A" "z: A" "p: x =\<^sub>A y" "q: y =\<^sub>A z"
- shows "rpathcomp`x`y`p`z`q: x =\<^sub>A z"
- by (routine lems: assms rpathcomp_type)
-
-text "
- The following proof is very long, chiefly because for every application of \<open>`\<close> we have to show the wellformedness of the type family appearing in the equality computation rule.
-"
-
-lemma rpathcomp_comp:
- assumes "A: U i" and "a: A"
- shows "rpathcomp`a`a`(refl a)`a`(refl a) \<equiv> refl a"
-unfolding rpathcomp_def
-proof compute
- fix x assume 1: "x: A"
- show "\<^bold>\<lambda>y p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q) p: \<Prod>y:A. x =\<^sub>A y \<rightarrow> (\<Prod>z:A. y =\<^sub>A z \<rightarrow> x =\<^sub>A z)"
- proof
- fix y assume 2: "y: A"
- show "\<^bold>\<lambda>p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q) p: x =\<^sub>A y \<rightarrow> (\<Prod>z:A. y =\<^sub>A z \<rightarrow> x =\<^sub>A z)"
- proof
- fix p assume 3: "p: x =\<^sub>A y"
- show "ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q) p: \<Prod>z:A. y =\<^sub>A z \<rightarrow> x =\<^sub>A z"
- proof (rule Equal_elim[where ?x=x and ?y=y])
- show "\<And>u. u: A \<Longrightarrow> \<^bold>\<lambda>z q. ind\<^sub>= refl q: \<Prod>z:A. u =\<^sub>A z \<rightarrow> u =\<^sub>A z"
- proof
- show "\<And>u z. \<lbrakk>u: A; z: A\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>q. ind\<^sub>= refl q: u =\<^sub>A z \<rightarrow> u =\<^sub>A z"
- proof
- fix u z assume asm: "u: A" "z: A"
- show "\<And>q. q: u =\<^sub>A z \<Longrightarrow> ind\<^sub>= refl q: u =\<^sub>A z"
- by (rule Equal_elim[where ?x=u and ?y=z]) (routine lems: assms asm)
- qed (routine lems: assms)
- qed (rule assms)
- qed (routine lems: assms 1 2 3)
- qed (routine lems: assms 1 2)
- qed (rule assms)
-
- next show "(\<^bold>\<lambda>y p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q) p)`a`(refl a)`a`(refl a) \<equiv> refl a"
- proof compute
- fix y assume 1: "y: A"
- show "\<^bold>\<lambda>p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q) p: a =\<^sub>A y \<rightarrow> (\<Prod>z:A. y =\<^sub>A z \<rightarrow> a =\<^sub>A z)"
- proof
- fix p assume 2: "p: a =\<^sub>A y"
- show "ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q) p: \<Prod>z:A. y =\<^sub>A z \<rightarrow> a =\<^sub>A z"
- proof (rule Equal_elim[where ?x=a and ?y=y])
- fix u assume 3: "u: A"
- show "\<^bold>\<lambda>z q. ind\<^sub>= refl q: \<Prod>z:A. u =\<^sub>A z \<rightarrow> u =\<^sub>A z"
- proof
- fix z assume 4: "z: A"
- show "\<^bold>\<lambda>q. ind\<^sub>= refl q: u =\<^sub>A z \<rightarrow> u =\<^sub>A z"
- proof
- show "\<And>q. q: u =\<^sub>A z \<Longrightarrow> ind\<^sub>= refl q: u =\<^sub>A z"
- by (rule Equal_elim[where ?x=u and ?y=z]) (routine lems: assms 3 4)
- qed (routine lems: assms 3 4)
- qed fact
- qed (routine lems: assms 1 2)
- qed (routine lems: assms 1)
-
- next show "(\<^bold>\<lambda>p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z. \<^bold>\<lambda>q. ind\<^sub>= refl q) p)`(refl a)`a`(refl a) \<equiv> refl a"
- proof compute
- fix p assume 1: "p: a =\<^sub>A a"
- show "ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q) p: \<Prod>z:A. a =\<^sub>A z \<rightarrow> a =\<^sub>A z"
- proof (rule Equal_elim[where ?x=a and ?y=a])
- fix u assume 2: "u: A"
- show "\<^bold>\<lambda>z q. ind\<^sub>= refl q: \<Prod>z:A. u =\<^sub>A z \<rightarrow> u =\<^sub>A z"
- proof
- fix z assume 3: "z: A"
- show "\<^bold>\<lambda>q. ind\<^sub>= refl q: u =\<^sub>A z \<rightarrow> u =\<^sub>A z"
- proof
- show "\<And>q. q: u =\<^sub>A z \<Longrightarrow> ind\<^sub>= refl q: u =\<^sub>A z"
- by (rule Equal_elim[where ?x=u and ?y=z]) (routine lems: assms 2 3)
- qed (routine lems: assms 2 3)
- qed fact
- qed (routine lems: assms 1)
-
- next show "(ind\<^sub>=(\<lambda>_. \<^bold>\<lambda>z q. ind\<^sub>= refl q)(refl a))`a`(refl a) \<equiv> refl a"
- proof compute
- fix u assume 1: "u: A"
- show "\<^bold>\<lambda>z q. ind\<^sub>= refl q: \<Prod>z:A. u =\<^sub>A z \<rightarrow> u =\<^sub>A z"
- proof
- fix z assume 2: "z: A"
- show "\<^bold>\<lambda>q. ind\<^sub>= refl q: u =\<^sub>A z \<rightarrow> u =\<^sub>A z"
- proof
- show "\<And>q. q: u =\<^sub>A z \<Longrightarrow> ind\<^sub>= refl q: u =\<^sub>A z"
- by (rule Equal_elim[where ?x=u and ?y=z]) (routine lems: assms 1 2)
- qed (routine lems: assms 1 2)
- qed fact
-
- next show "(\<^bold>\<lambda>z q. ind\<^sub>= refl q)`a`(refl a) \<equiv> refl a"
- proof compute
- fix a assume 1: "a: A"
- show "\<^bold>\<lambda>q. ind\<^sub>= refl q: a =\<^sub>A a \<rightarrow> a =\<^sub>A a"
- proof
- show "\<And>q. q: a =\<^sub>A a \<Longrightarrow> ind\<^sub>= refl q: a =\<^sub>A a"
- by (rule Equal_elim[where ?x=a and ?y=a]) (routine lems: assms 1)
- qed (routine lems: assms 1)
-
- next show "(\<^bold>\<lambda>q. ind\<^sub>= refl q)`(refl a) \<equiv> refl a"
- proof compute
- show "\<And>p. p: a =\<^sub>A a \<Longrightarrow> ind\<^sub>= refl p: a =\<^sub>A a"
- by (rule Equal_elim[where ?x=a and ?y=a]) (routine lems: assms)
- show "ind\<^sub>= refl (refl a) \<equiv> refl a"
- proof compute
- show "\<And>x. x: A \<Longrightarrow> refl(x): x =\<^sub>A x" ..
- qed (routine lems: assms)
- qed (routine lems: assms)
- qed fact
- qed (routine lems: assms)
- qed (routine lems: assms)
- qed fact
-qed fact
-
-
-text "The raw object lambda term is cumbersome to use, so we define a simpler constant instead."
-
-axiomatization pathcomp :: "[Term, Term] \<Rightarrow> Term" (infixl "\<bullet>" 120) where
- pathcomp_def: "\<lbrakk>
- A: U i;
- x: A; y: A; z: A;
- p: x =\<^sub>A y; q: y =\<^sub>A z
- \<rbrakk> \<Longrightarrow> p \<bullet> q \<equiv> rpathcomp`x`y`p`z`q"
+imports HoTT_Methods Equal Prod
+begin
-lemma pathcomp_type:
- assumes "A: U i" "x: A" "y: A" "z: A" "p: x =\<^sub>A y" "q: y =\<^sub>A z"
- shows "p \<bullet> q: x =\<^sub>A z"
-
-proof (subst pathcomp_def)
- show "A: U i" "x: A" "y: A" "z: A" "p: x =\<^sub>A y" "q: y =\<^sub>A z" by fact+
-qed (routine lems: assms rpathcomp_type)
+section \<open>Symmetry of equality/Path inverse\<close>
-lemma pathcomp_comp:
- assumes "A : U i" and "a : A" shows "(refl a) \<bullet> (refl a) \<equiv> refl a"
-by (subst pathcomp_def) (routine lems: assms rpathcomp_comp)
+definition inv :: "t \<Rightarrow> t" ("_\<inverse>" [1000] 1000) where "p\<inverse> \<equiv> ind\<^sub>= (\<lambda>x. refl x) p"
+lemma inv_type: "\<lbrakk>A: U i; x: A; y: A; p: x =\<^sub>A y\<rbrakk> \<Longrightarrow> p\<inverse>: y =\<^sub>A x"
+unfolding inv_def by (elim Equal_elim) routine
-lemmas EqualProps_type [intro] = inv_type pathcomp_type
-lemmas EqualProps_comp [comp] = inv_comp pathcomp_comp
+lemma inv_comp: "\<lbrakk>A: U i; a: A\<rbrakk> \<Longrightarrow> (refl a)\<inverse> \<equiv> refl a"
+unfolding inv_def by compute routine
-section \<open>Higher groupoid structure of types\<close>
+section \<open>Transitivity of equality/Path composition\<close>
-lemma
- assumes "A: U i" "x: A" "y: A" "p: x =\<^sub>A y"
- shows
- "ind\<^sub>= (\<lambda>u. refl (refl u)) p: p =[x =\<^sub>A y] p \<bullet> (refl y)" and
- "ind\<^sub>= (\<lambda>u. refl (refl u)) p: p =[x =\<^sub>A y] (refl x) \<bullet> p"
+text \<open>
+Composition function, of type @{term "x =\<^sub>A y \<rightarrow> (y =\<^sub>A z) \<rightarrow> (x =\<^sub>A z)"} polymorphic over @{term A}, @{term x}, @{term y}, and @{term z}.
+\<close>
-proof -
- show "ind\<^sub>= (\<lambda>u. refl (refl u)) p: p =[x =[A] y] p \<bullet> (refl y)"
- by (rule Equal_elim[where ?p=p and ?x=x and ?y=y]) (derive lems: assms)+
+definition pathcomp :: t where "pathcomp \<equiv> \<^bold>\<lambda>p. ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>q. ind\<^sub>= (\<lambda>x. (refl x)) q) p"
- show "ind\<^sub>= (\<lambda>u. refl (refl u)) p: p =[x =[A] y] (refl x) \<bullet> p"
- by (rule Equal_elim[where ?p=p and ?x=x and ?y=y]) (derive lems: assms)+
-qed
+syntax "_pathcomp" :: "[t, t] \<Rightarrow> t" (infixl "\<bullet>" 120)
+translations "p \<bullet> q" \<rightleftharpoons> "CONST pathcomp`p`q"
+lemma pathcomp_type:
+ assumes "A: U i" and "x: A" "y: A" "z: A"
+ shows "pathcomp: x =\<^sub>A y \<rightarrow> (y =\<^sub>A z) \<rightarrow> (x =\<^sub>A z)"
+unfolding pathcomp_def by rule (elim Equal_elim, routine add: assms)
-lemma
- assumes "A: U i" "x: A" "y: A" "p: x =\<^sub>A y"
- shows
- "ind\<^sub>= (\<lambda>u. refl (refl u)) p: p\<inverse> \<bullet> p =[y =\<^sub>A y] (refl y)" and
- "ind\<^sub>= (\<lambda>u. refl (refl u)) p: p \<bullet> p\<inverse> =[x =\<^sub>A x] (refl x)"
+corollary pathcomp_trans:
+ assumes "A: U i" and "x: A" "y: A" "z: A" and "p: x =\<^sub>A y" "q: y =\<^sub>A z"
+ shows "p \<bullet> q: x =\<^sub>A z"
+by (routine add: assms pathcomp_type)
-proof -
- show "ind\<^sub>= (\<lambda>u. refl (refl u)) p: p\<inverse> \<bullet> p =[y =\<^sub>A y] (refl y)"
- by (rule Equal_elim[where ?p=p and ?x=x and ?y=y]) (derive lems: assms)+
+lemma pathcomp_comp:
+ assumes "A: U i" and "a: A"
+ shows "(refl a) \<bullet> (refl a) \<equiv> refl a"
+unfolding pathcomp_def proof compute
+ show "(ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>q. ind\<^sub>= (\<lambda>x. refl x) q) (refl a))`(refl a) \<equiv> refl a"
+ proof compute
+ show "\<^bold>\<lambda>q. (ind\<^sub>= (\<lambda>x. refl x) q): a =\<^sub>A a \<rightarrow> a =\<^sub>A a"
+ by (routine add: assms)
- show "ind\<^sub>= (\<lambda>u. refl (refl u)) p: p \<bullet> p\<inverse> =[x =\<^sub>A x] (refl x)"
- by (rule Equal_elim[where ?p=p and ?x=x and ?y=y]) (derive lems: assms)+
-qed
+ show "(\<^bold>\<lambda>q. (ind\<^sub>= (\<lambda>x. refl x) q))`(refl a) \<equiv> refl a"
+ proof compute
+ show "\<And>q. q: a =\<^sub>A a \<Longrightarrow> ind\<^sub>= (\<lambda>x. refl x) q: a =\<^sub>A a" by (routine add: assms)
+ qed (derive lems: assms)
+ qed (routine add: assms)
+ show "\<And>p. p: a =\<^sub>A a \<Longrightarrow> ind\<^sub>= (\<lambda>_. \<^bold>\<lambda>q. ind\<^sub>= (\<lambda>x. refl x) q) p: a =\<^sub>A a \<rightarrow> a =\<^sub>A a"
+ by (routine add: assms)
+qed (routine add: assms)
-lemma
- assumes "A: U i" "x: A" "y: A" "p: x =\<^sub>A y"
- shows "ind\<^sub>= (\<lambda>u. refl (refl u)) p: p\<inverse>\<inverse> =[x =\<^sub>A y] p"
-by (rule Equal_elim[where ?p=p and ?x=x and ?y=y]) (derive lems: assms)
-text "Next we construct a proof term of associativity of path composition."
+section \<open>Higher groupoid structure of types\<close>
-schematic_goal
+schematic_goal pathcomp_right_id:
+ assumes "A: U(i)" "x: A" "y: A" "p: x =\<^sub>A y"
+ shows "?a: p \<bullet> (refl y) =[x =\<^sub>A y] p"
+proof (rule Equal_elim[where ?x=x and ?y=y and ?p=p]) \<comment> \<open>@{method elim} does not seem to work with schematic goals.\<close>
+ show "\<And>x. x: A \<Longrightarrow> refl(refl x): (refl x) \<bullet> (refl x) =[x =\<^sub>A x] (refl x)"
+ by (derive lems: assms pathcomp_comp)
+qed (routine add: assms pathcomp_type)
+
+schematic_goal pathcomp_left_id:
+ assumes "A: U(i)" "x: A" "y: A" "p: x =\<^sub>A y"
+ shows "?a: (refl x) \<bullet> p =[x =\<^sub>A y] p"
+proof (rule Equal_elim[where ?x=x and ?y=y and ?p=p])
+ show "\<And>x. x: A \<Longrightarrow> refl(refl x): (refl x) \<bullet> (refl x) =[x =\<^sub>A x] (refl x)"
+ by (derive lems: assms pathcomp_comp)
+qed (routine add: assms pathcomp_type)
+
+schematic_goal pathcomp_left_inv:
+ assumes "A: U(i)" "x: A" "y: A" "p: x =\<^sub>A y"
+ shows "?a: (p\<inverse> \<bullet> p) =[y =\<^sub>A y] refl(y)"
+proof (rule Equal_elim[where ?x=x and ?y=y and ?p=p])
+ show "\<And>x. x: A \<Longrightarrow> refl(refl x): (refl x)\<inverse> \<bullet> (refl x) =[x =\<^sub>A x] (refl x)"
+ by (derive lems: assms inv_comp pathcomp_comp)
+qed (routine add: assms inv_type pathcomp_type)
+
+schematic_goal pathcomp_right_inv:
+ assumes "A: U(i)" "x: A" "y: A" "p: x =\<^sub>A y"
+ shows "?a: (p \<bullet> p\<inverse>) =[x =\<^sub>A x] refl(x)"
+proof (rule Equal_elim[where ?x=x and ?y=y and ?p=p])
+ show "\<And>x. x: A \<Longrightarrow> refl(refl x): (refl x) \<bullet> (refl x)\<inverse> =[x =\<^sub>A x] (refl x)"
+ by (derive lems: assms inv_comp pathcomp_comp)
+qed (routine add: assms inv_type pathcomp_type)
+
+schematic_goal inv_involutive:
+ assumes "A: U(i)" "x: A" "y: A" "p: x =\<^sub>A y"
+ shows "?a: p\<inverse>\<inverse> =[x =\<^sub>A y] p"
+proof (rule Equal_elim[where ?x=x and ?y=y and ?p=p])
+ show "\<And>x. x: A \<Longrightarrow> refl(refl x): (refl x)\<inverse>\<inverse> =[x =\<^sub>A x] (refl x)"
+ by (derive lems: assms inv_comp)
+qed (routine add: assms inv_type)
+
+schematic_goal pathcomp_assoc:
assumes
- "A: U i"
+ "A: U(i)"
"x: A" "y: A" "z: A" "w: A"
"p: x =\<^sub>A y" "q: y =\<^sub>A z" "r: z =\<^sub>A w"
shows
- "?a: p \<bullet> (q \<bullet> r) =[x =\<^sub>A z] (p \<bullet> q) \<bullet> r"
-
-apply (rule Equal_elim[where ?p=p and ?x=x and ?y=y])
-apply (rule assms)+
-\<comment> \<open>Continue by substituting \<open>refl x \<bullet> q = q\<close> etc.\<close>
-sorry
+ "?a: p \<bullet> (q \<bullet> r) =[x =\<^sub>A w] (p \<bullet> q) \<bullet> r"
+proof (rule Equal_elim[where ?x=x and ?y=y and ?p=p])
+ fix x assume "x: A"
+ show "refl (q \<bullet> r): (refl x) \<bullet> (q \<bullet> r) =[x =\<^sub>A w] ((refl x) \<bullet> q) \<bullet> r"
+ \<comment> \<open>This requires substitution of *propositional* equality. \<close>
+ sorry
+ oops
section \<open>Transport\<close>
-definition transport :: "Term \<Rightarrow> Term" where
- "transport p \<equiv> ind\<^sub>= (\<lambda>x. (\<^bold>\<lambda>x. x)) p"
+definition transport :: "t \<Rightarrow> t" where "transport p \<equiv> ind\<^sub>= (\<lambda>_. (\<^bold>\<lambda>x. x)) p"
-text "Note that \<open>transport\<close> is a polymorphic function in our formulation."
+text \<open>Note that @{term transport} is a polymorphic function in our formulation.\<close>
-lemma transport_type:
- assumes
- "A: U i" "P: A \<longrightarrow> U i"
- "x: A" "y: A"
- "p: x =\<^sub>A y"
- shows "transport p: P x \<rightarrow> P y"
-unfolding transport_def
-by (rule Equal_elim[where ?p=p and ?x=x and ?y=y]) (routine lems: assms)
-
-lemma transport_comp:
- assumes "A: U i" and "x: A"
- shows "transport (refl x) \<equiv> id"
-unfolding transport_def by (derive lems: assms)
+lemma transport_type: "\<lbrakk>p: x =\<^sub>A y; x: A; y: A; A: U i; P: A \<longrightarrow> U i\<rbrakk> \<Longrightarrow> transport p: P x \<rightarrow> P y"
+unfolding transport_def by (elim Equal_elim) routine
+
+lemma transport_comp: "\<lbrakk>A: U i; x: A\<rbrakk> \<Longrightarrow> transport (refl x) \<equiv> id"
+unfolding transport_def by derive
end
diff --git a/HoTT.thy b/HoTT.thy
index abb1085..0e7a674 100644
--- a/HoTT.thy
+++ b/HoTT.thy
@@ -1,12 +1,13 @@
-(* Title: HoTT/HoTT.thy
- Author: Josh Chen
+(*
+Title: HoTT.thy
+Author: Joshua Chen
+Date: 2018
Homotopy type theory
*)
theory HoTT
imports
-
(* Basic theories *)
HoTT_Base
HoTT_Methods
@@ -22,18 +23,21 @@ Unit
(* Derived definitions and properties *)
EqualProps
-ProdProps
Proj
begin
-lemmas forms =
- Nat_form Prod_form Sum_form Coprod_form Equal_form Unit_form Empty_form
+
+text \<open>Rule bundles:\<close>
+
lemmas intros =
- Nat_intro Prod_intro Sum_intro Equal_intro Coprod_intro Unit_intro
+ Nat_intro_0 Nat_intro_succ Prod_intro Sum_intro Equal_intro Coprod_intro_inl Coprod_intro_inr Unit_intro
+
lemmas elims =
Nat_elim Prod_elim Sum_elim Equal_elim Coprod_elim Unit_elim Empty_elim
+
lemmas routines =
Nat_routine Prod_routine Sum_routine Equal_routine Coprod_routine Unit_routine Empty_routine
+
end
diff --git a/HoTT_Base.thy b/HoTT_Base.thy
index 916f6aa..2ad0ac5 100644
--- a/HoTT_Base.thy
+++ b/HoTT_Base.thy
@@ -1,97 +1,82 @@
-(* Title: HoTT/HoTT_Base.thy
- Author: Josh Chen
+(*
+Title: HoTT_Base.thy
+Author: Joshua Chen
+Date: 2018
-Basic setup and definitions of a homotopy type theory object logic with a cumulative universe hierarchy à la Russell.
+Basic setup of a homotopy type theory object logic with a cumulative Russell-style universe hierarchy.
*)
theory HoTT_Base
- imports Pure
-begin
-
+imports Pure
-section \<open>Foundational definitions\<close>
+begin
-text "Meta syntactic type for object-logic types and terms."
-typedecl Term
+section \<open>Basic setup\<close>
+typedecl t \<comment> \<open>Type of object types and terms\<close>
+typedecl ord \<comment> \<open>Type of meta-level numerals\<close>
-text "
- Formalize the typing judgment \<open>a: A\<close>.
- For judgmental/definitional equality we use the existing Pure equality \<open>\<equiv>\<close> and hence do not need to define a separate judgment for it.
-"
+axiomatization
+ O :: ord and
+ Suc :: "ord \<Rightarrow> ord" and
+ lt :: "[ord, ord] \<Rightarrow> prop" (infix "<" 999) and
+ leq :: "[ord, ord] \<Rightarrow> prop" (infix "\<le>" 999)
+where
+ lt_Suc [intro]: "n < (Suc n)" and
+ lt_trans [intro]: "\<lbrakk>m1 < m2; m2 < m3\<rbrakk> \<Longrightarrow> m1 < m3" and
+ leq_min [intro]: "O \<le> n"
-judgment has_type :: "[Term, Term] \<Rightarrow> prop" ("(3_:/ _)" [0, 0] 1000)
+section \<open>Judgment\<close>
-section \<open>Universe hierarchy\<close>
+judgment hastype :: "[t, t] \<Rightarrow> prop" ("(3_:/ _)")
-text "Finite meta-ordinals to index the universes."
-typedecl Ord
+section \<open>Universes\<close>
axiomatization
- O :: Ord and
- S :: "Ord \<Rightarrow> Ord" ("S _" [0] 1000) and
- lt :: "[Ord, Ord] \<Rightarrow> prop" (infix "<" 999) and
- leq :: "[Ord, Ord] \<Rightarrow> prop" (infix "\<le>" 999)
+ U :: "ord \<Rightarrow> t"
where
- lt_min: "\<And>n. O < S n"
-and
- lt_monotone1: "\<And>n. n < S n"
-and
- lt_monotone2: "\<And>m n. m < n \<Longrightarrow> S m < S n"
-and
- leq_min: "\<And>n. O \<le> n"
-and
- leq_monotone1: "\<And>n. n \<le> S n"
-and
- leq_monotone2: "\<And>m n. m \<le> n \<Longrightarrow> S m \<le> S n"
-
-lemmas Ord_rules [intro] = lt_min lt_monotone1 lt_monotone2 leq_min leq_monotone1 leq_monotone2
- \<comment> \<open>Enables \<open>standard\<close> to automatically solve inequalities.\<close>
-
-text "Define the universe types."
+ U_hierarchy: "i < j \<Longrightarrow> U i: U j" and
+ U_cumulative: "\<lbrakk>A: U i; i < j\<rbrakk> \<Longrightarrow> A: U j" and
+ U_cumulative': "\<lbrakk>A: U i; i \<le> j\<rbrakk> \<Longrightarrow> A: U j"
-axiomatization
- U :: "Ord \<Rightarrow> Term"
-where
- U_hierarchy: "\<And>i j. i < j \<Longrightarrow> U i: U j"
-and
- U_cumulative: "\<And>A i j. \<lbrakk>A: U i; i \<le> j\<rbrakk> \<Longrightarrow> A: U j"
+text \<open>
+Using method @{method rule} with @{thm U_cumulative} is unsafe, if applied blindly it will typically lead to non-termination.
+One should instead use @{method elim}, or instantiate @{thm U_cumulative} suitably.
-text "
- The rule \<open>U_cumulative\<close> is very unsafe: if used as-is it will usually lead to an infinite rewrite loop!
- To avoid this, it should be instantiated before being applied.
-"
+@{thm U_cumulative'} is an alternative rule used by the method \<open>lift\<close> in @{file HoTT_Methods.thy}.
+\<close>
section \<open>Type families\<close>
-text "
- The following abbreviation constrains the output type of a meta lambda expression when given input of certain type.
-"
-
-abbreviation (input) constrained :: "[Term \<Rightarrow> Term, Term, Term] \<Rightarrow> prop" ("(1_: _ \<longrightarrow> _)")
+abbreviation (input) constrained :: "[t \<Rightarrow> t, t, t] \<Rightarrow> prop" ("(1_:/ _ \<longrightarrow> _)")
where "f: A \<longrightarrow> B \<equiv> (\<And>x. x : A \<Longrightarrow> f x: B)"
-text "
- The above is used to define type families, which are constrained meta-lambdas \<open>P: A \<longrightarrow> B\<close> where \<open>A\<close> and \<open>B\<close> are small types.
-"
+text \<open>
+The abbreviation @{abbrev constrained} is used to define type families, which are constrained expressions @{term "P: A \<longrightarrow> B"}, where @{term "A::t"} and @{term "B::t"} are small types.
+\<close>
-type_synonym Typefam = "Term \<Rightarrow> Term"
+type_synonym tf = "t \<Rightarrow> t" \<comment> \<open>Type of type families\<close>
section \<open>Named theorems\<close>
-text "
- Named theorems to be used by proof methods later (see HoTT_Methods.thy).
-
- \<open>wellform\<close> declares necessary wellformedness conditions for type and inhabitation judgments, while \<open>comp\<close> declares computation rules, which are usually passed to invocations of the method \<open>subst\<close> to perform equational rewriting.
-"
-
-named_theorems wellform
named_theorems comp
+named_theorems form
+
+text \<open>
+Declare named theorems to be used by proof methods defined in @{file HoTT_Methods.thy}.
+
+@{attribute comp} declares computation rules, which are used by the \<open>compute\<close> method, and may also be passed to invocations of the method \<open>subst\<close> to perform equational rewriting.
+
+@{attribute form} declares type formation rules.
+These are mainly used by the \<open>cumulativity\<close> method, which lifts types into higher universes.
+\<close>
+
+(* Todo: Set up the Simplifier! *)
end
diff --git a/HoTT_Methods.thy b/HoTT_Methods.thy
index 32e412b..f0cee6c 100644
--- a/HoTT_Methods.thy
+++ b/HoTT_Methods.thy
@@ -1,46 +1,47 @@
-(* Title: HoTT/HoTT_Methods.thy
- Author: Josh Chen
+(*
+Title: HoTT_Methods.thy
+Author: Joshua Chen
+Date: 2018
-Method setup for the HoTT library. Relies heavily on Eisbach.
+Method setup for the HoTT logic.
*)
theory HoTT_Methods
- imports
- "HOL-Eisbach.Eisbach"
- "HOL-Eisbach.Eisbach_Tools"
- HoTT_Base
+imports HoTT_Base "HOL-Eisbach.Eisbach" "HOL-Eisbach.Eisbach_Tools"
+
begin
-section \<open>Deriving typing judgments\<close>
+section \<open>Handling universes\<close>
-text "
- \<open>routine\<close> proves routine type judgments \<open>a : A\<close> using the rules declared [intro] in the respective theory files, as well as additional provided lemmas.
-"
+method provelt = (rule lt_Suc | (rule lt_trans, (rule lt_Suc)+)+)
-method routine uses lems = (assumption | rule lems | standard)+
+method hierarchy = (rule U_hierarchy, provelt)
-text "
- \<open>wellformed'\<close> finds a proof of any valid typing judgment derivable from the judgment passed as \<open>jdmt\<close>.
- If no judgment is passed, it will try to resolve with the theorems declared \<open>wellform\<close>.
- \<open>wellform\<close> is like \<open>wellformed'\<close> but takes multiple judgments.
+method cumulativity declares form = (
+ ((elim U_cumulative' | (rule U_cumulative', rule form)), rule leq_min) |
+ ((elim U_cumulative | (rule U_cumulative, rule form)), provelt)
+)
- The named theorem \<open>wellform\<close> is declared in HoTT_Base.thy.
-"
+text \<open>
+Methods @{method provelt}, @{method hierarchy}, and @{method cumulativity} prove statements of the form
+\<^item> \<open>n < (Suc (... (Suc n) ...))\<close>,
+\<^item> \<open>U i: U (Suc (... (Suc i) ...))\<close>, and
+\<^item> @{prop "A: U i \<Longrightarrow> A: U j"}, where @{prop "i \<le> j"}
+respectively.
+\<close>
-method wellformed' uses jdmt declares wellform =
- match wellform in rl: "PROP ?P" \<Rightarrow> \<open>(
- catch \<open>rule rl[OF jdmt]\<close> \<open>fail\<close> |
- catch \<open>wellformed' jdmt: rl[OF jdmt]\<close> \<open>fail\<close>
- )\<close>
-method wellformed uses lems =
- match lems in lem: "?X : ?Y" \<Rightarrow> \<open>wellformed' jdmt: lem\<close>
+section \<open>Deriving typing judgments\<close>
+method routine uses add = (assumption | rule add | rule)+
-section \<open>Substitution and simplification\<close>
+text \<open>
+The method @{method routine} proves type judgments @{prop "a : A"} using the rules declared @{attribute intro} in the respective theory files, as well as additional provided lemmas passed using the modifier \<open>add\<close>.
+\<close>
-text "Import the \<open>subst\<close> method, used for substituting definitional equalities."
+
+section \<open>Substitution and simplification\<close>
ML_file "~~/src/Tools/misc_legacy.ML"
ML_file "~~/src/Tools/IsaPlanner/isand.ML"
@@ -48,24 +49,32 @@ ML_file "~~/src/Tools/IsaPlanner/rw_inst.ML"
ML_file "~~/src/Tools/IsaPlanner/zipper.ML"
ML_file "~~/src/Tools/eqsubst.ML"
-text "Perform basic single-step computations:"
+\<comment> \<open>Import the @{method subst} method, used for substituting definitional equalities.\<close>
+
+method compute declares comp = (subst comp)
-method compute uses lems = (subst lems comp | rule lems comp)
+text \<open>
+Method @{method compute} performs single-step simplifications, using any rules declared @{attribute comp} in the context.
+Premises of the rule(s) applied are added as new subgoals.
+\<close>
section \<open>Derivation search\<close>
-text " Combine \<open>routine\<close>, \<open>wellformed\<close>, and \<open>compute\<close> to search for derivations of judgments."
+text \<open>
+Combine @{method routine} and @{method compute} to search for derivations of judgments.
+Also handle universes using @{method hierarchy} and @{method cumulativity}.
+\<close>
-method derive uses lems = (routine lems: lems | compute lems: lems | wellformed lems: lems)+
+method derive uses lems = (routine add: lems | compute comp: lems | cumulativity form: lems | hierarchy)+
section \<open>Induction\<close>
-text "
- Placeholder section for the automation of induction, i.e. using the elimination rules.
- At the moment one must directly apply them with \<open>rule X_elim\<close>.
-"
+text \<open>
+Placeholder section for the automation of induction, i.e. using the elimination rules.
+At the moment one must directly apply them with \<open>rule X_elim\<close>.
+\<close>
end
diff --git a/Nat.thy b/Nat.thy
index e879c92..8a55852 100644
--- a/Nat.thy
+++ b/Nat.thy
@@ -1,54 +1,49 @@
-(* Title: HoTT/Nat.thy
- Author: Josh Chen
+(*
+Title: Nat.thy
+Author: Joshua Chen
+Date: 2018
Natural numbers
*)
theory Nat
- imports HoTT_Base
-begin
+imports HoTT_Base
+begin
-section \<open>Constants and type rules\<close>
axiomatization
- Nat :: Term ("\<nat>") and
- zero :: Term ("0") and
- succ :: "Term \<Rightarrow> Term" and
- indNat :: "[[Term, Term] \<Rightarrow> Term, Term, Term] \<Rightarrow> Term" ("(1ind\<^sub>\<nat>)")
+ Nat :: t ("\<nat>") and
+ zero :: t ("0") and
+ succ :: "t \<Rightarrow> t" and
+ indNat :: "[[t, t] \<Rightarrow> t, t, t] \<Rightarrow> t" ("(1ind\<^sub>\<nat>)")
where
- Nat_form: "\<nat>: U O"
-and
- Nat_intro_0: "0: \<nat>"
-and
- Nat_intro_succ: "n: \<nat> \<Longrightarrow> succ n: \<nat>"
-and
+ Nat_form: "\<nat>: U O" and
+
+ Nat_intro_0: "0: \<nat>" and
+
+ Nat_intro_succ: "n: \<nat> \<Longrightarrow> succ n: \<nat>" and
+
Nat_elim: "\<lbrakk>
- C: \<nat> \<longrightarrow> U i;
- \<And>n c. \<lbrakk>n: \<nat>; c: C n\<rbrakk> \<Longrightarrow> f n c: C (succ n);
a: C 0;
- n: \<nat>
- \<rbrakk> \<Longrightarrow> ind\<^sub>\<nat> f a n: C n"
-and
+ n: \<nat>;
+ C: \<nat> \<longrightarrow> U i;
+ \<And>n c. \<lbrakk>n: \<nat>; c: C n\<rbrakk> \<Longrightarrow> f n c: C (succ n) \<rbrakk> \<Longrightarrow> ind\<^sub>\<nat> (\<lambda>n c. f n c) a n: C n" and
+
Nat_comp_0: "\<lbrakk>
+ a: C 0;
C: \<nat> \<longrightarrow> U i;
- \<And>n c. \<lbrakk>n: \<nat>; c: C(n)\<rbrakk> \<Longrightarrow> f n c: C (succ n);
- a: C 0
- \<rbrakk> \<Longrightarrow> ind\<^sub>\<nat> f a 0 \<equiv> a"
-and
+ \<And>n c. \<lbrakk>n: \<nat>; c: C(n)\<rbrakk> \<Longrightarrow> f n c: C (succ n) \<rbrakk> \<Longrightarrow> ind\<^sub>\<nat> (\<lambda>n c. f n c) a 0 \<equiv> a" and
+
Nat_comp_succ: "\<lbrakk>
- C: \<nat> \<longrightarrow> U i;
- \<And>n c. \<lbrakk>n: \<nat>; c: C n\<rbrakk> \<Longrightarrow> f n c: C (succ n);
a: C 0;
- n: \<nat>
- \<rbrakk> \<Longrightarrow> ind\<^sub>\<nat> f a (succ n) \<equiv> f n (ind\<^sub>\<nat> f a n)"
-
-
-text "Rule attribute declarations:"
+ n: \<nat>;
+ C: \<nat> \<longrightarrow> U i;
+ \<And>n c. \<lbrakk>n: \<nat>; c: C n\<rbrakk> \<Longrightarrow> f n c: C (succ n) \<rbrakk> \<Longrightarrow> ind\<^sub>\<nat> (\<lambda>n c. f n c) a (succ n) \<equiv> f n (ind\<^sub>\<nat> f a n)"
-lemmas Nat_intro = Nat_intro_0 Nat_intro_succ
-lemmas Nat_comp [comp] = Nat_comp_0 Nat_comp_succ
-lemmas Nat_routine [intro] = Nat_form Nat_intro Nat_elim
+lemmas Nat_form [form]
+lemmas Nat_routine [intro] = Nat_form Nat_intro_0 Nat_intro_succ Nat_elim
+lemmas Nat_comps [comp] = Nat_comp_0 Nat_comp_succ
end
diff --git a/Prod.thy b/Prod.thy
index a7968b6..f90ee9c 100644
--- a/Prod.thy
+++ b/Prod.thy
@@ -1,89 +1,91 @@
-(* Title: HoTT/Prod.thy
- Author: Josh Chen
+(*
+Title: Prod.thy
+Author: Joshua Chen
+Date: 2018
-Dependent product (function) type
+Dependent product type
*)
theory Prod
- imports HoTT_Base
+imports HoTT_Base HoTT_Methods
+
begin
-section \<open>Constants and syntax\<close>
+section \<open>Basic definitions\<close>
axiomatization
- Prod :: "[Term, Typefam] \<Rightarrow> Term" and
- lambda :: "(Term \<Rightarrow> Term) \<Rightarrow> Term" (binder "\<^bold>\<lambda>" 30) and
- appl :: "[Term, Term] \<Rightarrow> Term" (infixl "`" 60)
- \<comment> \<open>Application binds tighter than abstraction.\<close>
+ Prod :: "[t, tf] \<Rightarrow> t" and
+ lambda :: "(t \<Rightarrow> t) \<Rightarrow> t" (binder "\<^bold>\<lambda>" 30) and
+ appl :: "[t, t] \<Rightarrow> t" ("(1_`/_)" [105, 106] 105) \<comment> \<open>Application binds tighter than abstraction.\<close>
syntax
- "_PROD" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3\<Prod>_:_./ _)" 30)
- "_PROD_ASCII" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3PROD _:_./ _)" 30)
+ "_prod" :: "[idt, t, t] \<Rightarrow> t" ("(3\<Prod>_:_./ _)" 30)
+ "_prod_ascii" :: "[idt, t, t] \<Rightarrow> t" ("(3II _:_./ _)" 30)
-text "The translations below bind the variable \<open>x\<close> in the expressions \<open>B\<close> and \<open>b\<close>."
+text \<open>The translations below bind the variable @{term x} in the expressions @{term B} and @{term b}.\<close>
translations
"\<Prod>x:A. B" \<rightleftharpoons> "CONST Prod A (\<lambda>x. B)"
- "PROD x:A. B" \<rightharpoonup> "CONST Prod A (\<lambda>x. B)"
+ "II x:A. B" \<rightharpoonup> "CONST Prod A (\<lambda>x. B)"
-text "Nondependent functions are a special case."
+text \<open>Non-dependent functions are a special case.\<close>
-abbreviation Function :: "[Term, Term] \<Rightarrow> Term" (infixr "\<rightarrow>" 40)
+abbreviation Fun :: "[t, t] \<Rightarrow> t" (infixr "\<rightarrow>" 40)
where "A \<rightarrow> B \<equiv> \<Prod>_: A. B"
+axiomatization where
+\<comment> \<open>Type rules\<close>
-section \<open>Type rules\<close>
+ Prod_form: "\<lbrakk>A: U i; B: A \<longrightarrow> U i\<rbrakk> \<Longrightarrow> \<Prod>x:A. B x: U i" and
-axiomatization where
- Prod_form: "\<lbrakk>A: U i; B: A \<longrightarrow> U i\<rbrakk> \<Longrightarrow> \<Prod>x:A. B x: U i"
-and
- Prod_intro: "\<lbrakk>\<And>x. x: A \<Longrightarrow> b x: B x; A: U i\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>x. b x: \<Prod>x:A. B x"
-and
- Prod_elim: "\<lbrakk>f: \<Prod>x:A. B x; a: A\<rbrakk> \<Longrightarrow> f`a: B a"
-and
- Prod_appl: "\<lbrakk>\<And>x. x: A \<Longrightarrow> b x: B x; a: A\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x. b x)`a \<equiv> b a"
-and
- Prod_uniq: "f : \<Prod>x:A. B x \<Longrightarrow> \<^bold>\<lambda>x. (f`x) \<equiv> f"
-and
- Prod_eq: "\<lbrakk>\<And>x. x: A \<Longrightarrow> b x \<equiv> c x; A: U i\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>x. b x \<equiv> \<^bold>\<lambda>x. c x"
-
-text "
- The Pure rules for \<open>\<equiv>\<close> only let us judge strict syntactic equality of object lambda expressions; Prod_eq is the actual definitional equality rule.
-
- Note that the syntax \<open>\<^bold>\<lambda>\<close> (bold lambda) used for dependent functions clashes with the proof term syntax (cf. \<section>2.5.2 of the Isabelle/Isar Implementation).
-"
-
-text "
- In addition to the usual type rules, it is a meta-theorem that whenever \<open>\<Prod>x:A. B x: U i\<close> is derivable from some set of premises \<Gamma>, then so are \<open>A: U i\<close> and \<open>B: A \<longrightarrow> U i\<close>.
-
- That is to say, the following inference rules are admissible, and it simplifies proofs greatly to axiomatize them directly.
-"
+ Prod_intro: "\<lbrakk>\<And>x. x: A \<Longrightarrow> b x: B x; A: U i\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>x. b x: \<Prod>x:A. B x" and
-axiomatization where
- Prod_wellform1: "(\<Prod>x:A. B x: U i) \<Longrightarrow> A: U i"
-and
- Prod_wellform2: "(\<Prod>x:A. B x: U i) \<Longrightarrow> B: A \<longrightarrow> U i"
+ Prod_elim: "\<lbrakk>f: \<Prod>x:A. B x; a: A\<rbrakk> \<Longrightarrow> f`a: B a" and
+
+ Prod_comp: "\<lbrakk>a: A; \<And>x. x: A \<Longrightarrow> b x: B x\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x. b x)`a \<equiv> b a" and
+ Prod_uniq: "f: \<Prod>x:A. B x \<Longrightarrow> \<^bold>\<lambda>x. f`x \<equiv> f" and
-text "Rule attribute declarations---set up various methods to use the type rules."
+\<comment> \<open>Congruence rules\<close>
-lemmas Prod_comp [comp] = Prod_appl Prod_uniq
-lemmas Prod_wellform [wellform] = Prod_wellform1 Prod_wellform2
+ Prod_form_eq: "\<lbrakk>A: U i; B: A \<longrightarrow> U i; C: A \<longrightarrow> U i; \<And>x. x: A \<Longrightarrow> B x \<equiv> C x\<rbrakk> \<Longrightarrow> \<Prod>x:A. B x \<equiv> \<Prod>x:A. C x" and
+
+ Prod_intro_eq: "\<lbrakk>\<And>x. x: A \<Longrightarrow> b x \<equiv> c x; A: U i\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>x. b x \<equiv> \<^bold>\<lambda>x. c x"
+
+text \<open>
+The Pure rules for \<open>\<equiv>\<close> only let us judge strict syntactic equality of object lambda expressions.
+The actual definitional equality rule is @{thm Prod_intro_eq}.
+Note that this is a separate rule from function extensionality.
+
+Note that the bold lambda symbol \<open>\<^bold>\<lambda>\<close> used for dependent functions clashes with the proof term syntax (cf. \<section>2.5.2 of the Isabelle/Isar Implementation).
+\<close>
+
+lemmas Prod_form [form]
lemmas Prod_routine [intro] = Prod_form Prod_intro Prod_elim
+lemmas Prod_comps [comp] = Prod_comp Prod_uniq
-section \<open>Function composition\<close>
+section \<open>Additional definitions\<close>
-definition compose :: "[Term, Term] \<Rightarrow> Term" (infixr "o" 110) where "g o f \<equiv> \<^bold>\<lambda>x. g`(f`x)"
+definition compose :: "[t, t] \<Rightarrow> t" (infixr "o" 110) where "g o f \<equiv> \<^bold>\<lambda>x. g`(f`x)"
-syntax "_COMPOSE" :: "[Term, Term] \<Rightarrow> Term" (infixr "\<circ>" 110)
+syntax "_compose" :: "[t, t] \<Rightarrow> t" (infixr "\<circ>" 110)
translations "g \<circ> f" \<rightleftharpoons> "g o f"
+declare compose_def [comp]
+
+lemma compose_assoc:
+ assumes "A: U i" and "f: A \<rightarrow> B" "g: B \<rightarrow> C" "h: \<Prod>x:C. D x"
+ shows "(h \<circ> g) \<circ> f \<equiv> h \<circ> (g \<circ> f)"
+by (derive lems: assms Prod_intro_eq)
-section \<open>Polymorphic identity function\<close>
+lemma compose_comp:
+ assumes "A: U i" and "\<And>x. x: A \<Longrightarrow> b x: B" and "\<And>x. x: B \<Longrightarrow> c x: C x"
+ shows "(\<^bold>\<lambda>x. c x) \<circ> (\<^bold>\<lambda>x. b x) \<equiv> \<^bold>\<lambda>x. c (b x)"
+by (derive lems: assms Prod_intro_eq)
-abbreviation id :: Term where "id \<equiv> \<^bold>\<lambda>x. x"
+abbreviation id :: t where "id \<equiv> \<^bold>\<lambda>x. x" \<comment> \<open>Polymorphic identity function\<close>
end
diff --git a/ProdProps.thy b/ProdProps.thy
deleted file mode 100644
index a68f79b..0000000
--- a/ProdProps.thy
+++ /dev/null
@@ -1,57 +0,0 @@
-(* Title: HoTT/ProdProps.thy
- Author: Josh Chen
-
-Properties of the dependent product
-*)
-
-theory ProdProps
- imports
- HoTT_Methods
- Prod
-begin
-
-
-section \<open>Composition\<close>
-
-text "
- The proof of associativity needs some guidance; it involves telling Isabelle to use the correct rule for \<Prod>-type definitional equality, and the correct substitutions in the subgoals thereafter.
-"
-
-lemma compose_assoc:
- assumes "A: U i" and "f: A \<rightarrow> B" "g: B \<rightarrow> C" "h: \<Prod>x:C. D x"
- shows "(h \<circ> g) \<circ> f \<equiv> h \<circ> (g \<circ> f)"
-proof (subst (0 1 2 3) compose_def)
- show "\<^bold>\<lambda>x. (\<^bold>\<lambda>y. h`(g`y))`(f`x) \<equiv> \<^bold>\<lambda>x. h`((\<^bold>\<lambda>y. g`(f`y))`x)"
- proof (subst Prod_eq)
- \<comment> \<open>Todo: set the Simplifier (or other simplification methods) up to use \<open>Prod_eq\<close>!\<close>
-
- show "\<And>x. x: A \<Longrightarrow> (\<^bold>\<lambda>y. h`(g`y))`(f`x) \<equiv> h`((\<^bold>\<lambda>y. g`(f`y))`x)"
- proof compute
- show "\<And>x. x: A \<Longrightarrow> h`(g`(f`x)) \<equiv> h`((\<^bold>\<lambda>y. g`(f`y))`x)"
- proof compute
- show "\<And>x. x: A \<Longrightarrow> g`(f`x): C" by (routine lems: assms)
- qed
- show "\<And>x. x: B \<Longrightarrow> h`(g`x): D (g`x)" by (routine lems: assms)
- qed (routine lems: assms)
- qed fact
-qed
-
-
-lemma compose_comp:
- assumes "A: U i" and "\<And>x. x: A \<Longrightarrow> b x: B" and "\<And>x. x: B \<Longrightarrow> c x: C x"
- shows "(\<^bold>\<lambda>x. c x) \<circ> (\<^bold>\<lambda>x. b x) \<equiv> \<^bold>\<lambda>x. c (b x)"
-proof (subst compose_def, subst Prod_eq)
- show "\<And>a. a: A \<Longrightarrow> (\<^bold>\<lambda>x. c x)`((\<^bold>\<lambda>x. b x)`a) \<equiv> (\<^bold>\<lambda>x. c (b x))`a"
- proof compute
- show "\<And>a. a: A \<Longrightarrow> c ((\<^bold>\<lambda>x. b x)`a) \<equiv> (\<^bold>\<lambda>x. c (b x))`a"
- by (derive lems: assms)
- qed (routine lems: assms)
-qed (derive lems: assms)
-
-
-text "Set up the \<open>compute\<close> method to automatically simplify function compositions."
-
-lemmas compose_comp [comp]
-
-
-end
diff --git a/Proj.thy b/Proj.thy
index 74c561c..e76e8d3 100644
--- a/Proj.thy
+++ b/Proj.thy
@@ -1,62 +1,43 @@
-(* Title: HoTT/Proj.thy
- Author: Josh Chen
+(*
+Title: Proj.thy
+Author: Joshua Chen
+Date: 2018
Projection functions \<open>fst\<close> and \<open>snd\<close> for the dependent sum type.
*)
theory Proj
- imports
- HoTT_Methods
- Prod
- Sum
-begin
+imports HoTT_Methods Prod Sum
+begin
-definition fst :: "Term \<Rightarrow> Term" where "fst p \<equiv> ind\<^sub>\<Sum> (\<lambda>x y. x) p"
-definition snd :: "Term \<Rightarrow> Term" where "snd p \<equiv> ind\<^sub>\<Sum> (\<lambda>x y. y) p"
-text "Typing judgments and computation rules for the dependent and non-dependent projection functions."
+definition fst :: "t \<Rightarrow> t" where "fst p \<equiv> ind\<^sub>\<Sum> (\<lambda>x y. x) p"
+definition snd :: "t \<Rightarrow> t" where "snd p \<equiv> ind\<^sub>\<Sum> (\<lambda>x y. y) p"
lemma fst_type:
- assumes "\<Sum>x:A. B x: U i" and "p: \<Sum>x:A. B x" shows "fst p: A"
+ assumes "A: U i" and "B: A \<longrightarrow> U i" and "p: \<Sum>x:A. B x" shows "fst p: A"
unfolding fst_def by (derive lems: assms)
lemma fst_comp:
assumes "A: U i" and "B: A \<longrightarrow> U i" and "a: A" and "b: B a" shows "fst <a,b> \<equiv> a"
-unfolding fst_def
-proof compute
- show "a: A" and "b: B a" by fact+
-qed (routine lems: assms)+
+unfolding fst_def by compute (derive lems: assms)
lemma snd_type:
- assumes "\<Sum>x:A. B x: U i" and "p: \<Sum>x:A. B x" shows "snd p: B (fst p)"
-unfolding snd_def
-proof
- show "\<And>p. p: \<Sum>x:A. B x \<Longrightarrow> B (fst p): U i" by (derive lems: assms fst_type)
-
- fix x y
- assume asm: "x: A" "y: B x"
- show "y: B (fst <x,y>)"
- proof (subst fst_comp)
- show "A: U i" by (wellformed lems: assms(1))
- show "\<And>x. x: A \<Longrightarrow> B x: U i" by (wellformed lems: assms(1))
- qed fact+
-qed fact
+ assumes "A: U i" and "B: A \<longrightarrow> U i" and "p: \<Sum>x:A. B x" shows "snd p: B (fst p)"
+unfolding snd_def proof (derive lems: assms)
+ show "\<And>p. p: \<Sum>x:A. B x \<Longrightarrow> fst p: A" using assms(1-2) by (rule fst_type)
+
+ fix x y assume asm: "x: A" "y: B x"
+ show "y: B (fst <x,y>)" by (derive lems: asm assms fst_comp)
+qed
lemma snd_comp:
assumes "A: U i" and "B: A \<longrightarrow> U i" and "a: A" and "b: B a" shows "snd <a,b> \<equiv> b"
-unfolding snd_def
-proof compute
- show "\<And>x y. y: B x \<Longrightarrow> y: B x" .
- show "a: A" by fact
- show "b: B a" by fact
-qed (routine lems: assms)
-
-
-text "Rule attribute declarations:"
+unfolding snd_def by (derive lems: assms)
-lemmas Proj_type [intro] = fst_type snd_type
-lemmas Proj_comp [comp] = fst_comp snd_comp
+lemmas Proj_types [intro] = fst_type snd_type
+lemmas Proj_comps [comp] = fst_comp snd_comp
end
diff --git a/Sum.thy b/Sum.thy
index aac81f7..463a9d4 100644
--- a/Sum.thy
+++ b/Sum.thy
@@ -1,69 +1,59 @@
-(* Title: HoTT/Sum.thy
- Author: Josh Chen
+(*
+Title: Sum.thy
+Author: Joshua Chen
+Date: 2018
Dependent sum type
*)
theory Sum
- imports HoTT_Base
-begin
+imports HoTT_Base
+begin
-section \<open>Constants and syntax\<close>
axiomatization
- Sum :: "[Term, Typefam] \<Rightarrow> Term" and
- pair :: "[Term, Term] \<Rightarrow> Term" ("(1<_,/ _>)") and
- indSum :: "[[Term, Term] \<Rightarrow> Term, Term] \<Rightarrow> Term" ("(1ind\<^sub>\<Sum>)")
+ Sum :: "[t, tf] \<Rightarrow> t" and
+ pair :: "[t, t] \<Rightarrow> t" ("(1<_,/ _>)") and
+ indSum :: "[[t, t] \<Rightarrow> t, t] \<Rightarrow> t" ("(1ind\<^sub>\<Sum>)")
syntax
- "_SUM" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3\<Sum>_:_./ _)" 20)
- "_SUM_ASCII" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3SUM _:_./ _)" 20)
+ "_sum" :: "[idt, t, t] \<Rightarrow> t" ("(3\<Sum>_:_./ _)" 20)
+ "_sum_ascii" :: "[idt, t, t] \<Rightarrow> t" ("(3SUM _:_./ _)" 20)
translations
"\<Sum>x:A. B" \<rightleftharpoons> "CONST Sum A (\<lambda>x. B)"
"SUM x:A. B" \<rightharpoonup> "CONST Sum A (\<lambda>x. B)"
-text "Nondependent pair."
-
-abbreviation Pair :: "[Term, Term] \<Rightarrow> Term" (infixr "\<times>" 50)
+abbreviation Pair :: "[t, t] \<Rightarrow> t" (infixr "\<times>" 50)
where "A \<times> B \<equiv> \<Sum>_:A. B"
+axiomatization where
+\<comment> \<open>Type rules\<close>
-section \<open>Type rules\<close>
+ Sum_form: "\<lbrakk>A: U i; B: A \<longrightarrow> U i\<rbrakk> \<Longrightarrow> \<Sum>x:A. B x: U i" and
+
+ Sum_intro: "\<lbrakk>B: A \<longrightarrow> U i; a: A; b: B a\<rbrakk> \<Longrightarrow> <a,b>: \<Sum>x:A. B x" and
-axiomatization where
- Sum_form: "\<lbrakk>A: U i; B: A \<longrightarrow> U i\<rbrakk> \<Longrightarrow> \<Sum>x:A. B x: U i"
-and
- Sum_intro: "\<lbrakk>B: A \<longrightarrow> U i; a: A; b: B a\<rbrakk> \<Longrightarrow> <a,b>: \<Sum>x:A. B x"
-and
Sum_elim: "\<lbrakk>
p: \<Sum>x:A. B x;
- \<And>x y. \<lbrakk>x: A; y: B x\<rbrakk> \<Longrightarrow> f x y: C <x,y>;
- C: \<Sum>x:A. B x \<longrightarrow> U i
- \<rbrakk> \<Longrightarrow> ind\<^sub>\<Sum> f p: C p" (* What does writing \<lambda>x y. f(x, y) change? *)
-and
+ C: \<Sum>x:A. B x \<longrightarrow> U i;
+ \<And>x y. \<lbrakk>x: A; y: B x\<rbrakk> \<Longrightarrow> f x y: C <x,y> \<rbrakk> \<Longrightarrow> ind\<^sub>\<Sum> (\<lambda>x y. f x y) p: C p" and
+
Sum_comp: "\<lbrakk>
a: A;
b: B a;
- \<And>x y. \<lbrakk>x: A; y: B(x)\<rbrakk> \<Longrightarrow> f x y: C <x,y>;
B: A \<longrightarrow> U i;
- C: \<Sum>x:A. B x \<longrightarrow> U i
- \<rbrakk> \<Longrightarrow> ind\<^sub>\<Sum> f <a,b> \<equiv> f a b"
-
-text "Admissible inference rules for sum formation:"
-
-axiomatization where
- Sum_wellform1: "(\<Sum>x:A. B x: U i) \<Longrightarrow> A: U i"
-and
- Sum_wellform2: "(\<Sum>x:A. B x: U i) \<Longrightarrow> B: A \<longrightarrow> U i"
+ C: \<Sum>x:A. B x \<longrightarrow> U i;
+ \<And>x y. \<lbrakk>x: A; y: B(x)\<rbrakk> \<Longrightarrow> f x y: C <x,y> \<rbrakk> \<Longrightarrow> ind\<^sub>\<Sum> (\<lambda>x y. f x y) <a,b> \<equiv> f a b" and
+\<comment> \<open>Congruence rules\<close>
-text "Rule attribute declarations:"
+ Sum_form_eq: "\<lbrakk>A: U i; B: A \<longrightarrow> U i; C: A \<longrightarrow> U i; \<And>x. x: A \<Longrightarrow> B x \<equiv> C x\<rbrakk> \<Longrightarrow> \<Sum>x:A. B x \<equiv> \<Sum>x:A. C x"
-lemmas Sum_comp [comp]
-lemmas Sum_wellform [wellform] = Sum_wellform1 Sum_wellform2
+lemmas Sum_form [form]
lemmas Sum_routine [intro] = Sum_form Sum_intro Sum_elim
+lemmas Sum_comp [comp]
end
diff --git a/Unit.thy b/Unit.thy
index 6760f27..7c221f0 100644
--- a/Unit.thy
+++ b/Unit.thy
@@ -1,33 +1,32 @@
-(* Title: HoTT/Unit.thy
- Author: Josh Chen
+(*
+Title: Unit.thy
+Author: Joshua Chen
+Date: 2018
Unit type
*)
theory Unit
- imports HoTT_Base
-begin
+imports HoTT_Base
+begin
-section \<open>Constants and type rules\<close>
axiomatization
- Unit :: Term ("\<one>") and
- pt :: Term ("\<star>") and
- indUnit :: "[Term, Term] \<Rightarrow> Term" ("(1ind\<^sub>\<one>)")
+ Unit :: t ("\<one>") and
+ pt :: t ("\<star>") and
+ indUnit :: "[t, t] \<Rightarrow> t" ("(1ind\<^sub>\<one>)")
where
- Unit_form: "\<one>: U O"
-and
- Unit_intro: "\<star>: \<one>"
-and
- Unit_elim: "\<lbrakk>C: \<one> \<longrightarrow> U i; c: C \<star>; a: \<one>\<rbrakk> \<Longrightarrow> ind\<^sub>\<one> c a: C a"
-and
- Unit_comp: "\<lbrakk>C: \<one> \<longrightarrow> U i; c: C \<star>\<rbrakk> \<Longrightarrow> ind\<^sub>\<one> c \<star> \<equiv> c"
+ Unit_form: "\<one>: U O" and
+ Unit_intro: "\<star>: \<one>" and
-text "Rule attribute declarations:"
+ Unit_elim: "\<lbrakk>a: \<one>; c: C \<star>; C: \<one> \<longrightarrow> U i\<rbrakk> \<Longrightarrow> ind\<^sub>\<one> c a: C a" and
-lemmas Unit_comp [comp]
+ Unit_comp: "\<lbrakk>c: C \<star>; C: \<one> \<longrightarrow> U i\<rbrakk> \<Longrightarrow> ind\<^sub>\<one> c \<star> \<equiv> c"
+
+lemmas Unit_form [form]
lemmas Unit_routine [intro] = Unit_form Unit_intro Unit_elim
+lemmas Unit_comp [comp]
end
diff --git a/Univalence.thy b/Univalence.thy
index b7f4400..3c9b520 100644
--- a/Univalence.thy
+++ b/Univalence.thy
@@ -1,177 +1,88 @@
-(* Title: HoTT/Univalence.thy
- Author: Josh Chen
+(*
+Title: Univalence.thy
+Author: Joshua Chen
+Date: 2018
Definitions of homotopy, equivalence and the univalence axiom.
*)
theory Univalence
- imports
- HoTT_Methods
- EqualProps
- ProdProps
- Sum
+imports HoTT_Methods EqualProps Prod Sum
+
begin
section \<open>Homotopy and equivalence\<close>
-text "We define polymorphic constants implementing the definitions of homotopy and equivalence."
-
-axiomatization homotopic :: "[Term, Term] \<Rightarrow> Term" (infix "~" 100) where
- homotopic_def: "\<lbrakk>
- f: \<Prod>x:A. B x;
- g: \<Prod>x:A. B x
- \<rbrakk> \<Longrightarrow> f ~ g \<equiv> \<Prod>x:A. (f`x) =[B x] (g`x)"
-
-axiomatization isequiv :: "Term \<Rightarrow> Term" where
- isequiv_def: "f: A \<rightarrow> B \<Longrightarrow> isequiv f \<equiv> (\<Sum>g: B \<rightarrow> A. g \<circ> f ~ id) \<times> (\<Sum>g: B \<rightarrow> A. f \<circ> g ~ id)"
-
-definition equivalence :: "[Term, Term] \<Rightarrow> Term" (infix "\<simeq>" 100)
- where "A \<simeq> B \<equiv> \<Sum>f: A \<rightarrow> B. isequiv f"
+definition homotopic :: "[t, tf, t, t] \<Rightarrow> t" where "homotopic A B f g \<equiv> \<Prod>x:A. (f`x) =[B x] (g`x)"
+syntax "_homotopic" :: "[t, idt, t, t, t] \<Rightarrow> t" ("(1_ ~[_:_. _]/ _)" [101, 0, 0, 0, 101] 100)
+translations "f ~[x:A. B] g" \<rightleftharpoons> "CONST homotopic A (\<lambda>x. B) f g"
-text "The identity function is an equivalence:"
-
-lemma isequiv_id:
- assumes "A: U i" and "id: A \<rightarrow> A"
- shows "<<id, \<^bold>\<lambda>x. refl x>, <id, \<^bold>\<lambda>x. refl x>>: isequiv id"
-proof (derive lems: assms isequiv_def homotopic_def)
- fix g assume asm: "g: A \<rightarrow> A"
- show "id \<circ> g: A \<rightarrow> A"
- unfolding compose_def by (routine lems: asm assms)
-
- show "\<Prod>x:A. ((id \<circ> g)`x) =\<^sub>A (id`x): U i"
- unfolding compose_def by (routine lems: asm assms)
- next
-
- show "<\<^bold>\<lambda>x. x, \<^bold>\<lambda>x. refl x>: \<Sum>g:A \<rightarrow> A. (g \<circ> id) ~ id"
- unfolding compose_def by (derive lems: assms homotopic_def)
+declare homotopic_def [comp]
- show "<\<^bold>\<lambda>x. x, lambda refl>: \<Sum>g:A \<rightarrow> A. (id \<circ> g) ~ id"
- unfolding compose_def by (derive lems: assms homotopic_def)
-qed (rule assms)
+definition isequiv :: "[t, t, t] \<Rightarrow> t" ("(3isequiv[_, _]/ _)") where
+ "isequiv[A, B] f \<equiv> (\<Sum>g: B \<rightarrow> A. g \<circ> f ~[x:A. A] id) \<times> (\<Sum>g: B \<rightarrow> A. f \<circ> g ~[x:B. B] id)"
+text \<open>
+The meanings of the syntax defined above are:
+\<^item> @{term "f ~[x:A. B x] g"} expresses that @{term f} and @{term g} are homotopic functions of type @{term "\<Prod>x:A. B x"}.
+\<^item> @{term "isequiv[A, B] f"} expresses that the non-dependent function @{term f} of type @{term "A \<rightarrow> B"} is an equivalence.
+\<close>
-text "We use the following lemma in a few proofs:"
+definition equivalence :: "[t, t] \<Rightarrow> t" (infix "\<simeq>" 100)
+ where "A \<simeq> B \<equiv> \<Sum>f: A \<rightarrow> B. isequiv[A, B] f"
-lemma isequiv_type:
- assumes "A: U i" and "B: U i" and "f: A \<rightarrow> B"
- shows "isequiv f: U i"
- by (derive lems: assms isequiv_def homotopic_def compose_def)
-
-
-text "The equivalence relation \<open>\<simeq>\<close> is symmetric:"
+lemma id_isequiv:
+ assumes "A: U i" "id: A \<rightarrow> A"
+ shows "<<id, \<^bold>\<lambda>x. refl x>, <id, \<^bold>\<lambda>x. refl x>>: isequiv[A, A] id"
+unfolding isequiv_def proof (routine add: assms)
+ show "\<And>g. g: A \<rightarrow> A \<Longrightarrow> id \<circ> g ~[x:A. A] id: U i" by (derive lems: assms)
+ show "<id, \<^bold>\<lambda>x. refl x>: \<Sum>g:A \<rightarrow> A. (g \<circ> id) ~[x:A. A] id" by (derive lems: assms)
+ show "<id, \<^bold>\<lambda>x. refl x>: \<Sum>g:A \<rightarrow> A. (id \<circ> g) ~[x:A. A] id" by (derive lems: assms)
+qed
-lemma equiv_sym:
+lemma equivalence_symm:
assumes "A: U i" and "id: A \<rightarrow> A"
shows "<id, <<id, \<^bold>\<lambda>x. refl x>, <id, \<^bold>\<lambda>x. refl x>>>: A \<simeq> A"
unfolding equivalence_def proof
- show "<<id, \<^bold>\<lambda>x. refl x>, <id, \<^bold>\<lambda>x. refl x>>: isequiv id" using assms by (rule isequiv_id)
-
- fix f assume "f: A \<rightarrow> A"
- with assms(1) assms(1) show "isequiv f: U i" by (rule isequiv_type)
-qed (rule assms)
+ show "\<And>f. f: A \<rightarrow> A \<Longrightarrow> isequiv[A, A] f: U i" by (derive lems: assms isequiv_def)
+ show "<<id, \<^bold>\<lambda>x. refl x>, <id, \<^bold>\<lambda>x. refl x>>: isequiv[A, A] id" using assms by (rule id_isequiv)
+qed fact
-section \<open>idtoeqv and the univalence axiom\<close>
+section \<open>idtoeqv\<close>
-definition idtoeqv :: Term
- where "idtoeqv \<equiv> \<^bold>\<lambda>p. <transport p, ind\<^sub>= (\<lambda>A. <<id, \<^bold>\<lambda>x. refl x>, <id, \<^bold>\<lambda>x. refl x>>) p>"
+definition idtoeqv :: t where "idtoeqv \<equiv> \<^bold>\<lambda>p. <transport p, ind\<^sub>= (\<lambda>_. <<id, \<^bold>\<lambda>x. refl x>, <id, \<^bold>\<lambda>x. refl x>>) p>"
-
-text "We prove that equal types are equivalent. The proof is long and uses universes."
+text \<open>We prove that equal types are equivalent. The proof involves universe types.\<close>
theorem
assumes "A: U i" and "B: U i"
shows "idtoeqv: (A =[U i] B) \<rightarrow> A \<simeq> B"
-unfolding idtoeqv_def equivalence_def
-proof
- fix p assume "p: A =[U i] B"
- show "<transport p, ind\<^sub>= (\<lambda>A. <<id, \<^bold>\<lambda>x. refl x>, <id, \<^bold>\<lambda>x. refl x>>) p>: \<Sum>f: A \<rightarrow> B. isequiv f"
- proof
- { fix f assume "f: A \<rightarrow> B"
- with assms show "isequiv f: U i" by (rule isequiv_type)
- }
-
- show "transport p: A \<rightarrow> B"
- proof (rule transport_type[where ?P="\<lambda>x. x" and ?A="U i" and ?i="S i"])
- show "\<And>x. x: U i \<Longrightarrow> x: U S i" by (elim U_cumulative) standard
- show "U i: U S i" by (rule U_hierarchy) standard
- qed fact+
+unfolding idtoeqv_def equivalence_def proof (routine add: assms)
+ show *: "\<And>f. f: A \<rightarrow> B \<Longrightarrow> isequiv[A, B] f: U i"
+ unfolding isequiv_def by (derive lems: assms)
+
+ show "\<And>p. p: A =[U i] B \<Longrightarrow> transport p: A \<rightarrow> B"
+ by (derive lems: assms transport_type[where ?i="Suc i"])
+ \<comment> \<open>Instantiate @{thm transport_type} with a suitable universe level here...\<close>
+
+ show "\<And>p. p: A =[U i] B \<Longrightarrow> ind\<^sub>= (\<lambda>_. <<id, \<^bold>\<lambda>x. refl x>, <id, \<^bold>\<lambda>x. refl x>>) p: isequiv[A, B] (transport p)"
+ proof (elim Equal_elim)
+ show "\<And>T. T: U i \<Longrightarrow> <<id, \<^bold>\<lambda>x. refl x>, <id, \<^bold>\<lambda>x. refl x>>: isequiv[T, T] (transport (refl T))"
+ by (derive lems: transport_comp[where ?i="Suc i" and ?A="U i"] id_isequiv)
+ \<comment> \<open>...and also here.\<close>
- show "ind\<^sub>= (\<lambda>A. <<id, \<^bold>\<lambda>x. refl x>, <id, \<^bold>\<lambda>x. refl x>>) p: isequiv (transport p)"
- proof (rule Equal_elim[where ?C="\<lambda>_ _ p. isequiv (transport p)"])
- fix A assume asm: "A: U i"
- show "<<id, \<^bold>\<lambda>x. refl x>, <id, \<^bold>\<lambda>x. refl x>>: isequiv (transport (refl A))"
- proof (derive lems: isequiv_def)
- show "transport (refl A): A \<rightarrow> A"
- unfolding transport_def
- by (compute lems: Equal_comp[where ?A="U i" and ?C="\<lambda>_ _ _. A \<rightarrow> A"]) (derive lems: asm)
-
- show "<<id, \<^bold>\<lambda>x. refl x>, <id, \<^bold>\<lambda>x. refl x>>:
- (\<Sum>g:A \<rightarrow> A. g \<circ> (transport (refl A)) ~ id) \<times>
- (\<Sum>g:A \<rightarrow> A. (transport (refl A)) \<circ> g ~ id)"
- proof (subst (1 2) transport_comp)
- show "U i: U S i" by (rule U_hierarchy) standard
- show "U i: U S i" by (rule U_hierarchy) standard
-
- show "<<id, \<^bold>\<lambda>x. refl x>, <id, \<^bold>\<lambda>x. refl x>>:
- (\<Sum>g:A \<rightarrow> A. g \<circ> id ~ id) \<times> (\<Sum>g:A \<rightarrow> A. id \<circ> g ~ id)"
- proof
- show "\<Sum>g:A \<rightarrow> A. id \<circ> g ~ id: U i"
- proof (derive lems: asm homotopic_def)
- fix g assume asm': "g: A \<rightarrow> A"
- show *: "id \<circ> g: A \<rightarrow> A" by (derive lems: asm asm' compose_def)
- show "\<Prod>x:A. ((id \<circ> g)`x) =\<^sub>A (id`x): U i" by (derive lems: asm *)
- qed (routine lems: asm)
-
- show "<id, \<^bold>\<lambda>x. refl x>: \<Sum>g:A \<rightarrow> A. id \<circ> g ~ id"
- proof
- fix g assume asm': "g: A \<rightarrow> A"
- show "id \<circ> g ~ id: U i"
- proof (derive lems: homotopic_def)
- show *: "id \<circ> g: A \<rightarrow> A" by (derive lems: asm asm' compose_def)
- show "\<Prod>x:A. ((id \<circ> g)`x) =\<^sub>A (id`x): U i" by (derive lems: asm *)
- qed (routine lems: asm)
- next
- show "\<^bold>\<lambda>x. refl x: id \<circ> id ~ id"
- proof compute
- show "\<^bold>\<lambda>x. refl x: id ~ id" by (subst homotopic_def) (derive lems: asm)
- qed (rule asm)
- qed (routine lems: asm)
-
- show "<id, \<^bold>\<lambda>x. refl x>: \<Sum>g:A \<rightarrow> A. g \<circ> id ~ id"
- proof
- fix g assume asm': "g: A \<rightarrow> A"
- show "g \<circ> id ~ id: U i" by (derive lems: asm asm' homotopic_def compose_def)
- next
- show "\<^bold>\<lambda>x. refl x: id \<circ> id ~ id"
- proof compute
- show "\<^bold>\<lambda>x. refl x: id ~ id" by (subst homotopic_def) (derive lems: asm)
- qed (rule asm)
- qed (routine lems: asm)
- qed
- qed fact+
- qed
- next
-
- fix A' B' p' assume asm: "A': U i" "B': U i" "p': A' =[U i] B'"
- show "isequiv (transport p'): U i"
- proof (rule isequiv_type)
- show "transport p': A' \<rightarrow> B'" by (derive lems: asm transport_def)
- qed fact+
- qed fact+
- qed
- next
-
- show "A =[U i] B: U (S i)" by (derive lems: assms | rule U_hierarchy)+
-qed
+ show "\<And>A B p. \<lbrakk>A: U i; B: U i; p: A =[U i] B\<rbrakk> \<Longrightarrow> isequiv[A, B] (transport p): U i"
+ unfolding isequiv_def by (derive lems: assms transport_type)
+ qed fact+
+qed (derive lems: assms)
-text "The univalence axiom."
+section \<open>The univalence axiom\<close>
-axiomatization univalence :: Term where
- UA: "univalence: isequiv idtoeqv"
+axiomatization univalence :: "[t, t] \<Rightarrow> t" where UA: "univalence A B: isequiv[A, B] idtoeqv"
end
diff --git a/ex/HoTT book/Ch1.thy b/ex/HoTT book/Ch1.thy
index a577fca..263f43d 100644
--- a/ex/HoTT book/Ch1.thy
+++ b/ex/HoTT book/Ch1.thy
@@ -1,55 +1,50 @@
-(* Title: HoTT/ex/HoTT book/Ch1.thy
- Author: Josh Chen
+(*
+Title: ex/HoTT book/Ch1.thy
+Author: Josh Chen
+Date: 2018
A formalization of some content of Chapter 1 of the Homotopy Type Theory book.
*)
theory Ch1
- imports "../../HoTT"
+imports "../../HoTT"
+
begin
chapter \<open>HoTT Book, Chapter 1\<close>
-section \<open>1.6 Dependent pair types (\<Sigma>-types)\<close>
+section \<open>1.6 Dependent pair types (\<Sum>-types)\<close>
-text "Propositional uniqueness principle:"
+paragraph \<open>Propositional uniqueness principle.\<close>
schematic_goal
- assumes "(\<Sum>x:A. B(x)): U(i)" and "p: \<Sum>x:A. B(x)"
- shows "?a: p =[\<Sum>x:A. B(x)] <fst p, snd p>"
+ assumes "A: U i" and "B: A \<longrightarrow> U i" and "p: \<Sum>x:A. B x"
+ shows "?a: p =[\<Sum>x:A. B x] <fst p, snd p>"
-text "Proof by induction on \<open>p: \<Sum>x:A. B(x)\<close>:"
+text \<open>Proof by induction on @{term "p: \<Sum>x:A. B x"}:\<close>
proof (rule Sum_elim[where ?p=p])
- text "We just need to prove the base case; the rest will be taken care of automatically."
-
- fix x y assume asm: "x: A" "y: B(x)" show
- "refl(<x,y>): <x,y> =[\<Sum>x:A. B(x)] <fst <x,y>, snd <x,y>>"
- proof (subst (0 1) comp)
- text "
- The computation rules for \<open>fst\<close> and \<open>snd\<close> require that \<open>x\<close> and \<open>y\<close> have appropriate types.
- The automatic proof methods have trouble picking the appropriate types, so we state them explicitly,
- "
- show "x: A" and "y: B(x)" by (fact asm)+
-
- text "...twice, once each for the substitutions of \<open>fst\<close> and \<open>snd\<close>."
- show "x: A" and "y: B(x)" by (fact asm)+
+ text \<open>We prove the base case.\<close>
+ fix x y assume asm: "x: A" "y: B x" show "refl <x,y>: <x,y> =[\<Sum>x:A. B x] <fst <x,y>, snd <x,y>>"
+ proof compute
+ show "x: A" and "y: B x" by (fact asm)+ \<comment> \<open>Hint the correct types.\<close>
+ text \<open>And now @{method derive} takes care of the rest.
+\<close>
qed (derive lems: assms asm)
-
qed (derive lems: assms)
section \<open>Exercises\<close>
-text "Exercise 1.13"
+paragraph \<open>Exercise 1.13\<close>
-abbreviation "not" ("\<not>'(_')") where "\<not>(A) \<equiv> A \<rightarrow> \<zero>"
+abbreviation "not" ("\<not>_") where "\<not>A \<equiv> A \<rightarrow> \<zero>"
text "This proof requires the use of universe cumulativity."
-proposition assumes "A: U(i)" shows "\<^bold>\<lambda>f. f`(inr(\<^bold>\<lambda>a. f`inl(a))): \<not>(\<not>(A + \<not>(A)))"
-by (derive lems: assms U_cumulative[where ?A=\<zero> and ?i=O and ?j=i])
+proposition assumes "A: U i" shows "\<^bold>\<lambda>f. f`(inr(\<^bold>\<lambda>a. f`(inl a))): \<not>(\<not>(A + \<not>A))"
+by (derive lems: assms)
end
diff --git a/ex/Methods.thy b/ex/Methods.thy
index c78af14..09975b0 100644
--- a/ex/Methods.thy
+++ b/ex/Methods.thy
@@ -1,76 +1,49 @@
-(* Title: HoTT/ex/Methods.thy
- Author: Josh Chen
+(*
+Title: ex/Methods.thy
+Author: Joshua Chen
+Date: 2018
-HoTT method usage examples
+Basic HoTT method usage examples.
*)
theory Methods
- imports "../HoTT"
-begin
+imports "../HoTT"
+begin
-text "Wellformedness results, metatheorems written into the object theory using the wellformedness rules."
lemma
assumes "A : U(i)" "B: A \<longrightarrow> U(i)" "\<And>x. x : A \<Longrightarrow> C x: B x \<longrightarrow> U(i)"
- shows "\<Sum>x:A. \<Prod>y:B x. \<Sum>z:C x y. \<Prod>w:A. x =\<^sub>A w : U(i)"
-by (routine lems: assms)
-
-
-lemma
- assumes "\<Sum>x:A. \<Prod>y: B x. \<Sum>z: C x y. D x y z: U(i)"
- shows
- "A : U(i)" and
- "B: A \<longrightarrow> U(i)" and
- "\<And>x. x : A \<Longrightarrow> C x: B x \<longrightarrow> U(i)" and
- "\<And>x y. \<lbrakk>x : A; y : B x\<rbrakk> \<Longrightarrow> D x y: C x y \<longrightarrow> U(i)"
-proof -
- show
- "A : U(i)" and
- "B: A \<longrightarrow> U(i)" and
- "\<And>x. x : A \<Longrightarrow> C x: B x \<longrightarrow> U(i)" and
- "\<And>x y. \<lbrakk>x : A; y : B x\<rbrakk> \<Longrightarrow> D x y: C x y \<longrightarrow> U(i)"
- by (derive lems: assms)
-qed
-
-
-text "Typechecking and constructing inhabitants:"
+ shows "\<Sum>x:A. \<Prod>y:B x. \<Sum>z:C x y. \<Prod>w:A. x =\<^sub>A w: U(i)"
+by (routine add: assms)
-\<comment> \<open>Correctly determines the type of the pair\<close>
+\<comment> \<open>Correctly determines the type of the pair.\<close>
schematic_goal "\<lbrakk>A: U(i); B: U(i); a : A; b : B\<rbrakk> \<Longrightarrow> <a, b> : ?A"
by routine
\<comment> \<open>Finds pair (too easy).\<close>
schematic_goal "\<lbrakk>A: U(i); B: U(i); a : A; b : B\<rbrakk> \<Longrightarrow> ?x : A \<times> B"
-apply (rule Sum_intro)
+apply (rule intros)
apply assumption+
done
-
-text "
- Function application.
- The proof methods are not yet automated as well as I would like; we still often have to explicitly specify types.
-"
-
-lemma
- assumes "A: U(i)" "a: A"
- shows "(\<^bold>\<lambda>x. <x,0>)`a \<equiv> <a,0>"
+\<comment> \<open>Function application. We still often have to explicitly specify types.\<close>
+lemma "\<lbrakk>A: U i; a: A\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x. <x,0>)`a \<equiv> <a,0>"
proof compute
show "\<And>x. x: A \<Longrightarrow> <x,0>: A \<times> \<nat>" by routine
-qed (routine lems: assms)
-
+qed
-lemma
- assumes "A: U(i)" "B: A \<longrightarrow> U(i)" "a: A" "b: B(a)"
- shows "(\<^bold>\<lambda>x y. <x,y>)`a`b \<equiv> <a,b>"
-proof compute
- show "\<And>x. x: A \<Longrightarrow> \<^bold>\<lambda>y. <x,y>: \<Prod>y:B(x). \<Sum>x:A. B(x)" by (routine lems: assms)
+text \<open>
+The proof below takes a little more work than one might expect; it would be nice to have a one-line method or proof.
+\<close>
- show "(\<^bold>\<lambda>b. <a,b>)`b \<equiv> <a, b>"
+lemma "\<lbrakk>A: U i; B: A \<longrightarrow> U i; a: A; b: B a\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x y. <x,y>)`a`b \<equiv> <a,b>"
+proof (compute, routine)
+ show "\<lbrakk>A: U i; B: A \<longrightarrow> U i; a: A; b: B a\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>y. <a,y>)`b \<equiv> <a,b>"
proof compute
- show "\<And>b. b: B(a) \<Longrightarrow> <a, b>: \<Sum>x:A. B(x)" by (routine lems: assms)
- qed fact
-qed fact
+ show "\<And>b. \<lbrakk>A: U i; B: A \<longrightarrow> U i; a: A; b: B a\<rbrakk> \<Longrightarrow> <a,b>: \<Sum>x:A. B x" by routine
+ qed
+qed
end
diff --git a/ex/Synthesis.thy b/ex/Synthesis.thy
index a5e77ec..3ee973c 100644
--- a/ex/Synthesis.thy
+++ b/ex/Synthesis.thy
@@ -1,78 +1,58 @@
-(* Title: HoTT/ex/Synthesis.thy
- Author: Josh Chen
+(*
+Title: ex/Synthesis.thy
+Author: Joshua Chen
+Date: 2018
-Examples of synthesis.
+Examples of synthesis
*)
theory Synthesis
- imports "../HoTT"
+imports "../HoTT"
+
begin
section \<open>Synthesis of the predecessor function\<close>
-text "
- In this example we construct, with the help of Isabelle, a predecessor function for the natural numbers.
-
- This is also done in \<open>CTT.thy\<close>; there the work is easier as the equality type is extensional, and also the methods are set up a little more nicely.
-"
+text \<open>
+In this example we construct a predecessor function for the natural numbers.
+This is also done in @{file "~~/src/CTT/ex/Synthesis.thy"}, there the work is much easier as the equality type is extensional.
+\<close>
-text "First we show that the property we want is well-defined."
+text \<open>First we show that the property we want is well-defined.\<close>
-lemma pred_welltyped: "\<Sum>pred:\<nat>\<rightarrow>\<nat> . ((pred`0) =\<^sub>\<nat> 0) \<times> (\<Prod>n:\<nat>. (pred`(succ n)) =\<^sub>\<nat> n): U(O)"
+lemma pred_welltyped: "\<Sum>pred: \<nat>\<rightarrow>\<nat>. (pred`0 =\<^sub>\<nat> 0) \<times> (\<Prod>n:\<nat>. pred`(succ n) =\<^sub>\<nat> n): U O"
by routine
-text "
- Now we look for an inhabitant of this type.
- Observe that we're looking for a lambda term \<open>pred\<close> satisfying \<open>(pred`0) =\<^sub>\<nat> 0\<close> and \<open>\<Prod>n:\<nat>. (pred`(succ n)) =\<^sub>\<nat> n\<close>.
- What if we require **definitional** equality instead of just propositional equality?
-"
+text \<open>
+Now we look for an inhabitant of this type.
+Observe that we're looking for a lambda term @{term pred} satisfying @{term "pred`0 =\<^sub>\<nat> 0"} and @{term "\<Prod>n:\<nat>. pred`(succ n) =\<^sub>\<nat> n"}.
+What if we require *definitional* instead of just propositional equality?
+\<close>
schematic_goal "?p`0 \<equiv> 0" and "\<And>n. n: \<nat> \<Longrightarrow> (?p`(succ n)) \<equiv> n"
apply compute
prefer 4 apply compute
-prefer 3 apply compute
-apply (rule Nat_routine Nat_elim | compute | assumption)+
-done
-
-text "
- The above proof finds a candidate, namely \<open>\<^bold>\<lambda>n. ind\<^sub>\<nat> (\<lambda>a b. a) 0 n\<close>.
- We prove this has the required type and properties.
-"
-
-definition pred :: Term where "pred \<equiv> \<^bold>\<lambda>n. ind\<^sub>\<nat> (\<lambda>a b. a) 0 n"
-
-lemma pred_type: "pred: \<nat> \<rightarrow> \<nat>" unfolding pred_def by routine
-
-lemma pred_props: "<refl(0), \<^bold>\<lambda>n. refl(n)>: ((pred`0) =\<^sub>\<nat> 0) \<times> (\<Prod>n:\<nat>. (pred`(succ n)) =\<^sub>\<nat> n)"
-proof (routine lems: pred_type)
- have *: "pred`0 \<equiv> 0" unfolding pred_def
- proof compute
- show "\<And>n. n: \<nat> \<Longrightarrow> ind\<^sub>\<nat> (\<lambda>a b. a) 0 n: \<nat>" by routine
- show "ind\<^sub>\<nat> (\<lambda>a b. a) 0 0 \<equiv> 0"
- proof compute
- show "\<nat>: U(O)" ..
- qed routine
- qed rule
- then show "refl(0): (pred`0) =\<^sub>\<nat> 0" by (subst *) routine
-
- show "\<^bold>\<lambda>n. refl(n): \<Prod>n:\<nat>. (pred`(succ(n))) =\<^sub>\<nat> n"
- unfolding pred_def proof
- show "\<And>n. n: \<nat> \<Longrightarrow> refl(n): ((\<^bold>\<lambda>n. ind\<^sub>\<nat> (\<lambda>a b. a) 0 n)`succ(n)) =\<^sub>\<nat> n"
- proof compute
- show "\<And>n. n: \<nat> \<Longrightarrow> ind\<^sub>\<nat> (\<lambda>a b. a) 0 n: \<nat>" by routine
- show "\<And>n. n: \<nat> \<Longrightarrow> refl(n): ind\<^sub>\<nat> (\<lambda>a b. a) 0 (succ n) =\<^sub>\<nat> n"
- proof compute
- show "\<nat>: U(O)" ..
- qed routine
- qed rule
- qed rule
-qed
-
-theorem
- "<pred, <refl(0), \<^bold>\<lambda>n. refl(n)>>: \<Sum>pred:\<nat>\<rightarrow>\<nat> . ((pred`0) =\<^sub>\<nat> 0) \<times> (\<Prod>n:\<nat>. (pred`(succ n)) =\<^sub>\<nat> n)"
-by (routine lems: pred_welltyped pred_type pred_props)
+apply (rule Nat_routine | compute)+
+oops
+\<comment> \<open>Something in the original proof broke when I revamped the theory. The completion of this derivation is left as an exercise to the reader.\<close>
+
+text \<open>
+The above proof finds a candidate, namely @{term "\<lambda>n. ind\<^sub>\<nat> (\<lambda>a b. a) 0 n"}.
+We prove this has the required type and properties.
+\<close>
+
+definition pred :: t where "pred \<equiv> \<^bold>\<lambda>n. ind\<^sub>\<nat> (\<lambda>a b. a) 0 n"
+
+lemma pred_type: "pred: \<nat> \<rightarrow> \<nat>"
+unfolding pred_def by routine
+
+lemma pred_props: "<refl 0, \<^bold>\<lambda>n. refl n>: (pred`0 =\<^sub>\<nat> 0) \<times> (\<Prod>n:\<nat>. pred`(succ n) =\<^sub>\<nat> n)"
+unfolding pred_def by derive
+
+theorem "<pred, <refl(0), \<^bold>\<lambda>n. refl(n)>>: \<Sum>pred:\<nat>\<rightarrow>\<nat> . ((pred`0) =\<^sub>\<nat> 0) \<times> (\<Prod>n:\<nat>. (pred`(succ n)) =\<^sub>\<nat> n)"
+by (derive lems: pred_type pred_props)
end
diff --git a/tests/Subgoal.thy b/tests/Subgoal.thy
deleted file mode 100644
index 82d7e5d..0000000
--- a/tests/Subgoal.thy
+++ /dev/null
@@ -1,63 +0,0 @@
-theory Subgoal
- imports "../HoTT"
-begin
-
-
-text "
- Proof of \<open>rpathcomp_type\<close> (see EqualProps.thy) in apply-style.
- Subgoaling can be used to fix variables and apply the elimination rules.
-"
-
-lemma rpathcomp_type:
- assumes "A: U(i)"
- shows "rpathcomp: \<Prod>x:A. \<Prod>y:A. x =\<^sub>A y \<rightarrow> (\<Prod>z:A. y =\<^sub>A z \<rightarrow> x =\<^sub>A z)"
-unfolding rpathcomp_def
-apply standard
- subgoal premises 1 for x \<comment> \<open>\<open>subgoal\<close> is the proof script version of \<open>fix-assume-show\<close>.\<close>
- apply standard
- subgoal premises 2 for y
- apply standard
- subgoal premises 3 for p
- apply (rule Equal_elim[where ?x=x and ?y=y and ?A=A])
- \<comment> \<open>specifying \<open>?A=A\<close> is crucial here to prevent the next \<open>subgoal\<close> from binding a schematic ?A which should be instantiated to \<open>A\<close>.\<close>
- prefer 4
- apply standard
- apply (rule Prod_intro)
- subgoal premises 4 for u z q
- apply (rule Equal_elim[where ?x=u and ?y=z])
- apply (routine lems: assms 4)
- done
- apply (routine lems: assms 1 2 3)
- done
- apply (routine lems: assms 1 2)
- done
- apply fact
- done
-apply fact
-done
-
-
-text "
- \<open>subgoal\<close> converts schematic variables to fixed free variables, making it unsuitable for use in \<open>schematic_goal\<close> proofs.
- This is the same thing as being unable to start a ``sub schematic-goal'' inside an ongoing proof.
-
- This is a problem for syntheses which need to use induction (elimination rules), as these often have to be applied to fixed variables, while keeping any schematic variables intact.
-"
-
-schematic_goal rpathcomp_synthesis:
- assumes "A: U(i)"
- shows "?a: \<Prod>x:A. \<Prod>y:A. x =\<^sub>A y \<rightarrow> (\<Prod>z:A. y =\<^sub>A z \<rightarrow> x =\<^sub>A z)"
-
-text "
- Try (and fail) to synthesize the constant for path composition, following the proof of \<open>rpathcomp_type\<close> below.
-"
-
-apply (rule intros)
- apply (rule intros)
- apply (rule intros)
- subgoal 123 for x y p
- apply (rule Equal_elim[where ?x=x and ?y=y and ?A=A])
- oops
-
-
-end
diff --git a/tests/Test.thy b/tests/Test.thy
index b0eb87a..6f9f996 100644
--- a/tests/Test.thy
+++ b/tests/Test.thy
@@ -1,121 +1,110 @@
-(* Title: HoTT/tests/Test.thy
- Author: Josh Chen
- Date: Aug 2018
+(*
+Title: tests/Test.thy
+Author: Joshua Chen
+Date: 2018
-This is an old "test suite" from early implementations of the theory.
-It is not always guaranteed to be up to date, or reflect most recent versions of the theory.
+This is an old test suite from early implementations.
+It is not always guaranteed to be up to date or to reflect most recent versions of the theory.
*)
theory Test
- imports "../HoTT"
+imports "../HoTT"
+
begin
-text "
- A bunch of theorems and other statements for sanity-checking, as well as things that should be automatically simplified.
-
- Things that *should* be automated:
- - Checking that \<open>A\<close> is a well-formed type, when writing things like \<open>x : A\<close> and \<open>A : U\<close>.
- - Checking that the argument to a (dependent/non-dependent) function matches the type? Also the arguments to a pair?
-"
+text \<open>
+A bunch of theorems and other statements for sanity-checking, as well as things that should be automatically simplified.
+
+Things that *should* be automated:
+\<^item> Checking that @{term A} is a well-formed type, when writing things like @{prop "x: A"} and @{prop "A: U i"}.
+\<^item> Checking that the argument to a (dependent/non-dependent) function matches the type? Also the arguments to a pair?
+\<close>
declare[[unify_trace_simp, unify_trace_types, simp_trace, simp_trace_depth_limit=5]]
- \<comment> \<open>Turn on trace for unification and the simplifier, for debugging.\<close>
+\<comment> \<open>Turn on trace for unification and the Simplifier, for debugging.\<close>
-section \<open>\<Pi>-type\<close>
+section \<open>\<Prod>-type\<close>
subsection \<open>Typing functions\<close>
-text "
- Declaring \<open>Prod_intro\<close> with the \<open>intro\<close> attribute (in HoTT.thy) enables \<open>standard\<close> to prove the following.
-"
+text \<open>Declaring @{thm Prod_intro} with the @{attribute intro} attribute enables @{method rule} to prove the following.\<close>
-proposition assumes "A : U(i)" shows "\<^bold>\<lambda>x. x: A \<rightarrow> A" by (routine lems: assms)
+proposition assumes "A : U(i)" shows "\<^bold>\<lambda>x. x: A \<rightarrow> A"
+by (routine add: assms)
proposition
assumes "A : U(i)" and "A \<equiv> B"
shows "\<^bold>\<lambda>x. x : B \<rightarrow> A"
proof -
have "A \<rightarrow> A \<equiv> B \<rightarrow> A" using assms by simp
- moreover have "\<^bold>\<lambda>x. x : A \<rightarrow> A" by (routine lems: assms)
+ moreover have "\<^bold>\<lambda>x. x : A \<rightarrow> A" by (routine add: assms)
ultimately show "\<^bold>\<lambda>x. x : B \<rightarrow> A" by simp
qed
proposition
assumes "A : U(i)" and "B : U(i)"
shows "\<^bold>\<lambda>x y. x : A \<rightarrow> B \<rightarrow> A"
-by (routine lems: assms)
-
+by (routine add: assms)
subsection \<open>Function application\<close>
-proposition assumes "a : A" shows "(\<^bold>\<lambda>x. x)`a \<equiv> a" by (derive lems: assms)
-
-text "Currying:"
+proposition assumes "a : A" shows "(\<^bold>\<lambda>x. x)`a \<equiv> a"
+by (derive lems: assms)
lemma
assumes "a : A" and "\<And>x. x: A \<Longrightarrow> B(x): U(i)"
shows "(\<^bold>\<lambda>x y. y)`a \<equiv> \<^bold>\<lambda>y. y"
-proof compute
- show "\<And>x. x : A \<Longrightarrow> \<^bold>\<lambda>y. y : B(x) \<rightarrow> B(x)" by (routine lems: assms)
-qed fact
+by (derive lems: assms)
-lemma "\<lbrakk>A: U(i); B: U(i); a : A; b : B\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x y. y)`a`b \<equiv> b" by derive
+lemma "\<lbrakk>A: U(i); B: U(i); a : A; b : B\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x y. y)`a`b \<equiv> b"
+by derive
-lemma "\<lbrakk>A: U(i); a : A \<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x y. f x y)`a \<equiv> \<^bold>\<lambda>y. f a y"
-proof compute
- show "\<And>x. \<lbrakk>A: U(i); x: A\<rbrakk> \<Longrightarrow> \<^bold>\<lambda>y. f x y: \<Prod>y:B(x). C x y"
- proof
- oops
+lemma "\<lbrakk>A: U(i); a : A\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x y. f x y)`a \<equiv> \<^bold>\<lambda>y. f a y"
+proof derive
+oops \<comment> \<open>Missing some premises.\<close>
lemma "\<lbrakk>a : A; b : B(a); c : C(a)(b)\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>x. \<^bold>\<lambda>y. \<^bold>\<lambda>z. f x y z)`a`b`c \<equiv> f a b c"
- oops
+proof derive
+oops
subsection \<open>Currying functions\<close>
proposition curried_function_formation:
- fixes A B C
- assumes
- "A : U(i)" and
- "B: A \<longrightarrow> U(i)" and
- "\<And>x. C(x): B(x) \<longrightarrow> U(i)"
+ assumes "A : U(i)" and "B: A \<longrightarrow> U(i)" and "\<And>x. C(x): B(x) \<longrightarrow> U(i)"
shows "\<Prod>x:A. \<Prod>y:B(x). C x y : U(i)"
- by (routine lems: assms)
-
+by (routine add: assms)
proposition higher_order_currying_formation:
assumes
- "A: U(i)" and
- "B: A \<longrightarrow> U(i)" and
+ "A: U(i)" and "B: A \<longrightarrow> U(i)" and
"\<And>x y. y: B(x) \<Longrightarrow> C(x)(y): U(i)" and
"\<And>x y z. z : C(x)(y) \<Longrightarrow> D(x)(y)(z): U(i)"
shows "\<Prod>x:A. \<Prod>y:B(x). \<Prod>z:C(x)(y). D(x)(y)(z): U(i)"
- by (routine lems: assms)
-
+by (routine add: assms)
lemma curried_type_judgment:
- assumes "A: U(i)" "B: A \<longrightarrow> U(i)" "\<And>x y. \<lbrakk>x : A; y : B(x)\<rbrakk> \<Longrightarrow> f x y : C x y"
+ assumes "A: U(i)" and "B: A \<longrightarrow> U(i)" and "\<And>x y. \<lbrakk>x : A; y : B(x)\<rbrakk> \<Longrightarrow> f x y : C x y"
shows "\<^bold>\<lambda>x y. f x y : \<Prod>x:A. \<Prod>y:B(x). C x y"
- by (routine lems: assms)
+by (routine add: assms)
-text "
- Polymorphic identity function is now trivial due to lambda expression polymorphism.
- (Was more involved in previous monomorphic incarnations.)
-"
+text \<open>
+Polymorphic identity function is now trivial due to lambda expression polymorphism.
+It was more involved in previous monomorphic incarnations.
+\<close>
-definition Id :: "Term" where "Id \<equiv> \<^bold>\<lambda>x. x"
-
-lemma "\<lbrakk>x: A\<rbrakk> \<Longrightarrow> Id`x \<equiv> x"
-unfolding Id_def by (compute, routine)
+lemma "x: A \<Longrightarrow> id`x \<equiv> x"
+by derive
section \<open>Natural numbers\<close>
-text "Automatic proof methods recognize natural numbers."
+text \<open>Automatic proof methods recognize natural numbers.\<close>
+
+proposition "succ(succ(succ 0)): \<nat>" by routine
-proposition "succ(succ(succ 0)): Nat" by routine
end