aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJosh Chen2018-06-01 03:39:51 +0200
committerJosh Chen2018-06-01 03:39:51 +0200
commita7303e36651ea1f8ec50958415fa0db7295ad957 (patch)
tree8df911435e07db5875c86c6ed05a00f822d4c4cc
parent095bc4a60ab2c38a56c34b4b99d363c4c0f14e3d (diff)
Should be final version of Prod. Theorems proving stuff about currying. Rules for Sum, going to change them to use object-level arguments more.
-rw-r--r--HoTT.thy37
-rw-r--r--HoTT_Theorems.thy69
2 files changed, 65 insertions, 41 deletions
diff --git a/HoTT.thy b/HoTT.thy
index 6de4efb..8c9fa20 100644
--- a/HoTT.thy
+++ b/HoTT.thy
@@ -23,20 +23,9 @@ subsection \<open>Type families\<close>
text "Type families are implemented as meta-level lambda terms of type \<open>Term \<Rightarrow> Term\<close> that further satisfy the following property."
-abbreviation is_type_family :: "[(Term \<Rightarrow> Term), Term] \<Rightarrow> prop" ("(3_:/ _ \<rightarrow> U)")
+abbreviation is_type_family :: "[Term \<Rightarrow> Term, Term] \<Rightarrow> prop" ("(3_:/ _ \<rightarrow> U)")
where "P: A \<rightarrow> U \<equiv> (\<And>x::Term. x : A \<Longrightarrow> P(x) : U)"
-\<comment> \<open>
-I originally wrote the following, but I'm not sure it's useful.
-\<open>theorem constant_type_family': "B : U \<Longrightarrow> \<lambda>_. B: A \<rightarrow> U"
- proof -
- assume "B : U"
- then show "\<lambda>_. B: A \<rightarrow> U" .
- qed
-
-lemmas constant_type_family = constant_type_family' constant_type_family'[rotated]\<close>
-\<close>
-
subsection \<open>Definitional equality\<close>
text "We take the meta-equality \<open>\<equiv>\<close>, defined by the Pure framework for any of its terms, and use it additionally for definitional/judgmental equality of types and terms in our theory.
@@ -58,8 +47,8 @@ subsection \<open>Basic types\<close>
subsubsection \<open>Dependent function/product\<close>
consts
- Prod :: "[Term, (Term \<Rightarrow> Term)] \<Rightarrow> Term"
- lambda :: "[Term, (Term \<Rightarrow> Term)] \<Rightarrow> Term"
+ Prod :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term"
+ lambda :: "[Term, Term \<Rightarrow> Term] \<Rightarrow> Term"
syntax
"_Prod" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3\<Prod>_:_./ _)" 10)
"__lambda" :: "[idt, Term, Term] \<Rightarrow> Term" ("(3\<^bold>\<lambda>_:_./ _)" 10)
@@ -76,13 +65,13 @@ axiomatization
where
Prod_form: "\<And>(A::Term) (B::Term \<Rightarrow> Term). \<lbrakk>A : U; B : A \<rightarrow> U\<rbrakk> \<Longrightarrow> \<Prod>x:A. B(x) : U" and
- Prod_intro [intro]: "\<And>(A::Term) (b::Term \<Rightarrow> Term) (B::Term \<Rightarrow> Term).
+ Prod_intro [intro]: "\<And>(A::Term) (B::Term \<Rightarrow> Term) (b::Term \<Rightarrow> Term).
(\<And>x::Term. x : A \<Longrightarrow> b(x) : B(x)) \<Longrightarrow> \<^bold>\<lambda>x:A. b(x) : \<Prod>x:A. B(x)" and
- Prod_elim [elim]: "\<And>(f::Term) (A::Term) (B::Term \<Rightarrow> Term) (a::Term).
+ Prod_elim [elim]: "\<And>(A::Term) (B::Term \<Rightarrow> Term) (f::Term) (a::Term).
\<lbrakk>f : \<Prod>x:A. B(x); a : A\<rbrakk> \<Longrightarrow> f`a : B(a)" and
- Prod_comp [simp]: "\<And>(a::Term) (A::Term) (b::Term \<Rightarrow> Term). a : A \<Longrightarrow> (\<^bold>\<lambda>x:A. b(x))`a \<equiv> b(a)" and
+ Prod_comp [simp]: "\<And>(A::Term) (b::Term \<Rightarrow> Term) (a::Term). (\<^bold>\<lambda>x:A. b(x))`a \<equiv> b(a)" and
Prod_uniq [simp]: "\<And>(A::Term) (f::Term). \<^bold>\<lambda>x:A. (f`x) \<equiv> f"
@@ -104,21 +93,25 @@ abbreviation Pair :: "[Term, Term] \<Rightarrow> Term" (infixr "\<times>" 50)
axiomatization
pair :: "[Term, Term] \<Rightarrow> Term" ("(1'(_,/ _'))") and
- indSum :: "[Term \<Rightarrow> Term, Term \<Rightarrow> Term, Term] \<Rightarrow> Term"
+ indSum :: "[Term \<Rightarrow> Term, [Term, Term] \<Rightarrow> Term, Term] \<Rightarrow> Term"
where
Sum_form: "\<And>(A::Term) (B::Term \<Rightarrow> Term). \<lbrakk>A : U; B: A \<rightarrow> U\<rbrakk> \<Longrightarrow> \<Sum>x:A. B(x) : U" and
Sum_intro [intro]: "\<And>(A::Term) (B::Term \<Rightarrow> Term) (a::Term) (b::Term).
\<lbrakk>a : A; b : B(a)\<rbrakk> \<Longrightarrow> (a, b) : \<Sum>x:A. B(x)" and
- Sum_elim [elim]: "\<And>(A::Term) (B::Term \<Rightarrow> Term) (C::Term \<Rightarrow> Term) (f::Term \<Rightarrow> Term) (p::Term).
- \<lbrakk>C: \<Sum>x:A. B(x) \<rightarrow> U; \<And>x y::Term. \<lbrakk>x : A; y : B(x)\<rbrakk> \<Longrightarrow> f((x,y)) : C((x,y)); p : \<Sum>x:A. B(x)\<rbrakk> \<Longrightarrow> (indSum C f p) : C(p)" and
+ Sum_elim [elim]: "\<And>(A::Term) (B::Term \<Rightarrow> Term) (C::Term \<Rightarrow> Term) (f::[Term, Term] \<Rightarrow> Term) (p::Term).
+ \<lbrakk>C: \<Sum>x:A. B(x) \<rightarrow> U; \<And>x y::Term. \<lbrakk>x : A; y : B(x)\<rbrakk> \<Longrightarrow> f x y : C((x,y)); p : \<Sum>x:A. B(x)\<rbrakk> \<Longrightarrow> (indSum C f p) : C(p)" and
- Sum_comp [simp]: "\<And>(A::Term) (B::Term \<Rightarrow> Term) (C::Term \<Rightarrow> Term) (f::Term \<Rightarrow> Term) (a::Term) (b::Term).
- (indSum C f (a,b)) \<equiv> f((a,b))"
+ Sum_comp [simp]: "\<And>(C::Term \<Rightarrow> Term) (f::[Term, Term] \<Rightarrow> Term) (a::Term) (b::Term). (indSum C f (a,b)) \<equiv> f a b"
lemmas Sum_formation = Sum_form Sum_form[rotated]
+definition fst :: "[Term, [Term, Term] \<Rightarrow> Term] \<Rightarrow> (Term \<Rightarrow> Term)" ("(1fst[/_,/ _])")
+ where "fst[A, B] \<equiv> indSum (\<lambda>_. A) (\<lambda>a. \<lambda>b. a)"
+
+lemma "fst[A, B](a,b) \<equiv> a" unfolding fst_def by simp
+
text "A choice had to be made for the elimination rule: we formalize the function \<open>f\<close> taking \<open>a : A\<close> and \<open>b : B(x)\<close> and returning \<open>C((a,b))\<close> as a meta level \<open>f::Term \<Rightarrow> Term\<close> instead of an object logic dependent function \<open>f : \<Prod>x:A. B(x)\<close>.
However we should be able to later show the equivalence of the formalizations."
diff --git a/HoTT_Theorems.thy b/HoTT_Theorems.thy
index 0aefe94..5922b51 100644
--- a/HoTT_Theorems.thy
+++ b/HoTT_Theorems.thy
@@ -21,34 +21,65 @@ text "Declaring \<open>Prod_intro\<close> with the \<open>intro\<close> attribut
lemma "\<^bold>\<lambda>x:A. x : A\<rightarrow>A" ..
proposition "A \<equiv> B \<Longrightarrow> \<^bold>\<lambda>x:A. x : B\<rightarrow>A"
-proof -
- assume assm: "A \<equiv> B"
- have id: "\<^bold>\<lambda>x:A. x : A\<rightarrow>A" ..
- from assm have "A\<rightarrow>A \<equiv> B\<rightarrow>A" by simp
- with id show "\<^bold>\<lambda>x:A. x : B\<rightarrow>A" ..
-qed
+ proof -
+ assume assm: "A \<equiv> B"
+ have id: "\<^bold>\<lambda>x:A. x : A\<rightarrow>A" ..
+ from assm have "A\<rightarrow>A \<equiv> B\<rightarrow>A" by simp
+ with id show "\<^bold>\<lambda>x:A. x : B\<rightarrow>A" ..
+ qed
proposition "\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B. x : A\<rightarrow>B\<rightarrow>A"
-proof
- fix a
- assume "a : A"
- then show "\<^bold>\<lambda>y:B. a : B \<rightarrow> A" ..
-qed
+ proof
+ fix a
+ assume "a : A"
+ then show "\<^bold>\<lambda>y:B. a : B \<rightarrow> A" ..
+ qed
subsection \<open>Function application\<close>
proposition "a : A \<Longrightarrow> (\<^bold>\<lambda>x:A. x)`a \<equiv> a" by simp
-text "Two arguments:"
+text "Currying:"
+
+lemma "(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B. f x y)`a \<equiv> \<^bold>\<lambda>y:B. f a y" by simp
+
+lemma "(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B. \<^bold>\<lambda>z:C. f x y z)`a`b`c \<equiv> f a b c" by simp
+
+proposition wellformed_currying:
+ fixes
+ A::Term and
+ B::"Term \<Rightarrow> Term" and
+ C::"Term \<Rightarrow> Term \<Rightarrow> Term"
+ assumes
+ "A : U" and
+ "B: A \<rightarrow> U" and
+ "\<And>x::Term. C(x): B(x) \<rightarrow> U"
+ shows "\<Prod>x:A. \<Prod>y:B(x). C x y : U"
+proof (rule Prod_formation)
+ show "\<And>x::Term. x : A \<Longrightarrow> \<Prod>y:B(x). C x y : U"
+ proof (rule Prod_formation)
+ fix x y::Term
+ assume "x : A"
+ show "y : B x \<Longrightarrow> C x y : U" by (rule assms(3))
+ qed (rule assms(2))
+qed (rule assms(1))
lemma
- assumes "a : A" and "b : B"
- shows "(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B. x)`a`b \<equiv> a"
-proof -
- have "(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B. x)`a \<equiv> \<^bold>\<lambda>y:B. a" using assms(1) by (rule Prod_comp[of a A "\<lambda>x. \<^bold>\<lambda>y:B. x"])
- then have "(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B. x)`a`b \<equiv> (\<^bold>\<lambda>y:B. a)`b" by simp
- also have "(\<^bold>\<lambda>y:B. a)`b \<equiv> a" using assms by simp
- finally show "(\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B. x)`a`b \<equiv> a" .
+ fixes
+ a b A::Term and
+ B::"Term \<Rightarrow> Term" and
+ f C::"[Term, Term] \<Rightarrow> Term"
+ assumes "\<And>x y::Term. \<lbrakk>x : A; y : B(x)\<rbrakk> \<Longrightarrow> f x y : C x y"
+ shows "\<^bold>\<lambda>x:A. \<^bold>\<lambda>y:B(x). f x y : \<Prod>x:A. \<Prod>y:B(x). C x y"
+proof
+ fix x::Term
+ assume *: "x : A"
+ show "\<^bold>\<lambda>y:B(x). f x y : \<Prod>y:B(x). C x y"
+ proof
+ fix y::Term
+ assume **: "y : B(x)"
+ show "f x y : C x y" by (rule assms[OF * **])
+ qed
qed
text "Note that the propositions and proofs above often say nothing about the well-formedness of the types, or the well-typedness of the lambdas involved; one has to be very explicit and prove such things separately!