aboutsummaryrefslogtreecommitdiff
path: root/documentation/book
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--documentation/bookmark/artificial_intelligence/differentiable_programming.md16
-rw-r--r--documentation/bookmark/artificial_intelligence/machine_learning.md78
-rw-r--r--documentation/bookmark/back_end/c++.md1
-rw-r--r--documentation/bookmark/machine_learning.md93
4 files changed, 95 insertions, 93 deletions
diff --git a/documentation/bookmark/artificial_intelligence/differentiable_programming.md b/documentation/bookmark/artificial_intelligence/differentiable_programming.md
new file mode 100644
index 000000000..9bfd27186
--- /dev/null
+++ b/documentation/bookmark/artificial_intelligence/differentiable_programming.md
@@ -0,0 +1,16 @@
+# Reference
+
+0. [Differentiable Programming in C++ - Vassil Vassilev & William Moses - CppCon 2021](https://www.youtube.com/watch?v=1QQj1mAV-eY)
+0. [Demystifying Differentiable Programming: Shift/Reset the Penultimate Backpropagator](https://arxiv.org/abs/1803.10228)
+0. [The Taichi Programming Language](http://taichi.graphics/)
+0. [The principles behind Differentiable Programming - Erik Meijer](https://www.youtube.com/watch?v=lk0PhtSHE38)
+0. [Kotlin∇: Type-safe Symbolic Differentiation for Kotlin](https://github.com/breandan/kotlingrad)
+0. [Differentiable Programming Manifesto](https://github.com/apple/swift/blob/master/docs/DifferentiableProgramming.md)
+0. [Backpropagation in the Simply Typed Lambda-calculus with Linear Negation](https://arxiv.org/abs/1909.13768)
+0. [One-and-a-Half Simple Differential Programming Languages](https://pages.cpsc.ucalgary.ca/~robin/FMCS/FMCS2019/slides/GordonPlotkin-FMCS2019.pdf)
+0. [Differentiable Programming Mega-Proposal](https://forums.swift.org/t/differentiable-programming-mega-proposal/28547)
+0. https://fluxml.ai/2019/02/07/what-is-differentiable-programming.html
+0. https://github.com/breandan/kotlingrad
+0. https://colinraffel.com/blog/you-don-t-know-jax.html
+0. https://github.com/tensorflow/mlir
+
diff --git a/documentation/bookmark/artificial_intelligence/machine_learning.md b/documentation/bookmark/artificial_intelligence/machine_learning.md
new file mode 100644
index 000000000..a998c7aaa
--- /dev/null
+++ b/documentation/bookmark/artificial_intelligence/machine_learning.md
@@ -0,0 +1,78 @@
+# Transformer
+
+0. [Transformers from scratch](http://www.peterbloem.nl/blog/transformers)
+
+# Exemplar
+
+0. https://ml5js.org/
+0. https://www.csie.ntu.edu.tw/~cjlin/libsvm/
+0. http://halide-lang.org/
+
+# Reference
+
+0. [Why are ML Compilers so Hard?](https://petewarden.com/2021/12/24/why-are-ml-compilers-so-hard/)
+0. ["Multi-Level Intermediate Representation" Compiler Infrastructure](https://github.com/tensorflow/mlir)
+0. [Sampling can be faster than optimization](https://www.pnas.org/content/116/42/20881)
+0. [Layer rotation: a surprisingly powerful indicator of generalization in deep networks](https://arxiv.org/abs/1806.01603v2)
+0. https://nostalgebraist.tumblr.com/post/185326092369/the-transformer-explained
+0. [HyperE: Hyperbolic Embeddings for Entities](https://hazyresearch.github.io/hyperE/)
+0. https://www.samcoope.com/posts/playing_around_with_noise_as_targets
+0. https://lobste.rs/s/hgejxf/why_is_machine_learning_most_often
+0. https://boingboing.net/2018/11/12/local-optima-r-us.html/amp
+0. https://crazyoscarchang.github.io/2019/02/16/seven-myths-in-machine-learning-research/
+0. https://www.c4ml.org/
+0. https://medium.com/@l2k/why-are-machine-learning-projects-so-hard-to-manage-8e9b9cf49641
+0. https://github.com/MikeInnes/diff-zoo
+0. https://cloud.google.com/blog/products/ai-machine-learning/introducing-feast-an-open-source-feature-store-for-machine-learning
+0. https://towardsdatascience.com/introducing-manifold-db9e90f20347
+0. http://snap.stanford.edu/graphsage/
+0. https://heartbeat.fritz.ai/capsule-networks-a-new-and-attractive-ai-architecture-bd1198cc8ad4
+0. http://super-ms.mit.edu/rum.html
+
+# Inductive logic programming
+
+0. [Inductive logic programming at 30: a new introduction](https://arxiv.org/abs/2008.07912)
+
+# Deep learning
+
+0. [GAME2020 4. Dr. Vincent Nozick Geometric Neurons](https://www.youtube.com/watch?v=KC3c_Mdj1dk)
+0. [Evolution Strategies](https://lilianweng.github.io/lil-log/2019/09/05/evolution-strategies.html)
+0. [Monadic Deep Learning: Performing monadic automatic differentiation in parallel](https://deeplearning.thoughtworks.school/assets/paper.pdf)
+0. https://github.com/microsoft/tensorwatch
+0. https://d2l.ai/
+0. https://hadrienj.github.io/posts/Deep-Learning-Book-Series-Introduction/
+0. http://nlp.seas.harvard.edu/NamedTensor
+0. https://tvm.ai/
+0. https://machinelearningmastery.com/framework-for-better-deep-learning/
+0. [Geometric Understanding of Deep Learning](https://arxiv.org/abs/1805.10451)
+0. https://towardsdatascience.com/what-is-geometric-deep-learning-b2adb662d91d
+0. https://deeplearning4j.org/
+0. [Deep(er) learning](http://www.jneurosci.org/content/early/2018/07/13/JNEUROSCI.0153-18.2018?versioned=true)
+
+# Neural network
+
+0. https://github.com/BrainJS/brain.js
+0. https://blog.jle.im/entry/practical-dependent-types-in-haskell-1.html
+0. https://matloff.wordpress.com/2018/06/20/neural-networks-are-essentially-polynomial-regression/
+0. https://www.quantamagazine.org/foundations-built-for-a-general-theory-of-neural-networks-20190131#AI
+0. https://rkevingibson.github.io/blog/neural-networks-as-ordinary-differential-equations/
+
+# Tensor
+
+0. http://nlp.seas.harvard.edu/NamedTensor.html
+0. http://nlp.seas.harvard.edu/NamedTensor2
+
+# Meta-learning
+
+0. https://blog.fastforwardlabs.com/2019/05/22/metalearners-learning-how-to-learn.html
+0. https://www.bayeswatch.com/2018/11/30/HTYM/
+0. https://bender.dreem.com/
+
+# Model
+
+0. http://onnx.ai/
+
+# Training
+
+0. https://ai.googleblog.com/2019/03/introducing-gpipe-open-source-library.html
+
diff --git a/documentation/bookmark/back_end/c++.md b/documentation/bookmark/back_end/c++.md
index e9e684c4e..21664d692 100644
--- a/documentation/bookmark/back_end/c++.md
+++ b/documentation/bookmark/back_end/c++.md
@@ -1,5 +1,6 @@
# Reference
+0. [Back to Basics: Move Semantics - Nicolai Josuttis - CppCon 2021](https://www.youtube.com/watch?v=Bt3zcJZIalk)
0. [Type-and-resource Safety in Modern C++ - Bjarne Stroustrup - CppCon 2021](https://www.youtube.com/watch?v=l3rvjWfBzZI)
0. [Exceptional C++ - Victor Ciura - CppCon 2021](https://www.youtube.com/watch?v=SjlfhyZn2yA)
diff --git a/documentation/bookmark/machine_learning.md b/documentation/bookmark/machine_learning.md
deleted file mode 100644
index 6d11d7ca0..000000000
--- a/documentation/bookmark/machine_learning.md
+++ /dev/null
@@ -1,93 +0,0 @@
-# Transformer
-
-1. [Transformers from scratch](http://www.peterbloem.nl/blog/transformers)
-
-# Exemplar
-
-1. https://ml5js.org/
-1. https://www.csie.ntu.edu.tw/~cjlin/libsvm/
-1. http://halide-lang.org/
-
-# Reference
-
-1. [Why are ML Compilers so Hard?](https://petewarden.com/2021/12/24/why-are-ml-compilers-so-hard/)
-1. ["Multi-Level Intermediate Representation" Compiler Infrastructure](https://github.com/tensorflow/mlir)
-1. [Sampling can be faster than optimization](https://www.pnas.org/content/116/42/20881)
-1. [Layer rotation: a surprisingly powerful indicator of generalization in deep networks](https://arxiv.org/abs/1806.01603v2)
-1. https://nostalgebraist.tumblr.com/post/185326092369/the-transformer-explained
-1. [HyperE: Hyperbolic Embeddings for Entities](https://hazyresearch.github.io/hyperE/)
-1. https://www.samcoope.com/posts/playing_around_with_noise_as_targets
-1. https://lobste.rs/s/hgejxf/why_is_machine_learning_most_often
-1. https://boingboing.net/2018/11/12/local-optima-r-us.html/amp
-1. https://crazyoscarchang.github.io/2019/02/16/seven-myths-in-machine-learning-research/
-1. https://www.c4ml.org/
-1. https://medium.com/@l2k/why-are-machine-learning-projects-so-hard-to-manage-8e9b9cf49641
-1. https://github.com/MikeInnes/diff-zoo
-1. https://cloud.google.com/blog/products/ai-machine-learning/introducing-feast-an-open-source-feature-store-for-machine-learning
-1. https://towardsdatascience.com/introducing-manifold-db9e90f20347
-1. http://snap.stanford.edu/graphsage/
-1. https://heartbeat.fritz.ai/capsule-networks-a-new-and-attractive-ai-architecture-bd1198cc8ad4
-1. http://super-ms.mit.edu/rum.html
-
-# Inductive logic programming
-
-1. [Inductive logic programming at 30: a new introduction](https://arxiv.org/abs/2008.07912)
-
-# Deep learning
-
-1. [GAME2020 4. Dr. Vincent Nozick Geometric Neurons](https://www.youtube.com/watch?v=KC3c_Mdj1dk)
-1. [Evolution Strategies](https://lilianweng.github.io/lil-log/2019/09/05/evolution-strategies.html)
-1. [Monadic Deep Learning: Performing monadic automatic differentiation in parallel](https://deeplearning.thoughtworks.school/assets/paper.pdf)
-1. [Demystifying Differentiable Programming: Shift/Reset the Penultimate Backpropagator](https://arxiv.org/abs/1803.10228)
-1. https://github.com/microsoft/tensorwatch
-1. https://d2l.ai/
-1. https://hadrienj.github.io/posts/Deep-Learning-Book-Series-Introduction/
-1. http://nlp.seas.harvard.edu/NamedTensor
-1. https://tvm.ai/
-1. https://machinelearningmastery.com/framework-for-better-deep-learning/
-1. [Geometric Understanding of Deep Learning](https://arxiv.org/abs/1805.10451)
-1. https://towardsdatascience.com/what-is-geometric-deep-learning-b2adb662d91d
-1. https://deeplearning4j.org/
-1. [Deep(er) learning](http://www.jneurosci.org/content/early/2018/07/13/JNEUROSCI.0153-18.2018?versioned=true)
-
-# Neural network
-
-1. https://github.com/BrainJS/brain.js
-1. https://blog.jle.im/entry/practical-dependent-types-in-haskell-1.html
-1. https://matloff.wordpress.com/2018/06/20/neural-networks-are-essentially-polynomial-regression/
-1. https://www.quantamagazine.org/foundations-built-for-a-general-theory-of-neural-networks-20190131#AI
-1. https://rkevingibson.github.io/blog/neural-networks-as-ordinary-differential-equations/
-
-# Tensor
-
-1. http://nlp.seas.harvard.edu/NamedTensor.html
-1. http://nlp.seas.harvard.edu/NamedTensor2
-
-# Meta-learning
-
-1. https://blog.fastforwardlabs.com/2019/05/22/metalearners-learning-how-to-learn.html
-1. https://www.bayeswatch.com/2018/11/30/HTYM/
-1. https://bender.dreem.com/
-
-# Model
-
-1. http://onnx.ai/
-
-# Training
-
-1. https://ai.googleblog.com/2019/03/introducing-gpipe-open-source-library.html
-
-# Differentiable programming
-
-1. [The Taichi Programming Language](http://taichi.graphics/)
-1. [The principles behind Differentiable Programming - Erik Meijer](https://www.youtube.com/watch?v=lk0PhtSHE38)
-1. [Kotlin∇: Type-safe Symbolic Differentiation for Kotlin](https://github.com/breandan/kotlingrad)
-1. [Differentiable Programming Manifesto](https://github.com/apple/swift/blob/master/docs/DifferentiableProgramming.md)
-1. [Backpropagation in the Simply Typed Lambda-calculus with Linear Negation](https://arxiv.org/abs/1909.13768)
-1. [One-and-a-Half Simple Differential Programming Languages](https://pages.cpsc.ucalgary.ca/~robin/FMCS/FMCS2019/slides/GordonPlotkin-FMCS2019.pdf)
-1. [Differentiable Programming Mega-Proposal](https://forums.swift.org/t/differentiable-programming-mega-proposal/28547)
-1. https://fluxml.ai/2019/02/07/what-is-differentiable-programming.html
-1. https://github.com/breandan/kotlingrad
-1. https://colinraffel.com/blog/you-don-t-know-jax.html
-1. https://github.com/tensorflow/mlir
-