aboutsummaryrefslogtreecommitdiff
path: root/stdlib/test
diff options
context:
space:
mode:
authorEduardo Julian2018-07-03 19:53:11 -0400
committerEduardo Julian2018-07-03 19:53:11 -0400
commit56b20b2c3e96f983490c0dbde95634e06fbdf73c (patch)
tree3000d494d73f0db0d23a728a6e7e609086ebe5e9 /stdlib/test
parentaac5a7796939cd705d955acb616cbff38474606d (diff)
- Removed "lux/math/constructive".
Diffstat (limited to '')
-rw-r--r--stdlib/test/test/lux/math/constructive.lux58
1 files changed, 0 insertions, 58 deletions
diff --git a/stdlib/test/test/lux/math/constructive.lux b/stdlib/test/test/lux/math/constructive.lux
deleted file mode 100644
index 86f8b7360..000000000
--- a/stdlib/test/test/lux/math/constructive.lux
+++ /dev/null
@@ -1,58 +0,0 @@
-(.module:
- [lux #+ ->]
- (lux (data text/format)
- (math ["_" constructive #*])))
-
-(theorem: #export (n/+ [param .Nat] [subject .Nat])
- .Nat
- (.n/+ param subject))
-
-(proposition: #export (apply2 f input0 input1 output))
-
-(proposition: #export (commutativity f left right output)
- (-> (apply2 f left right output)
- (apply2 f right left output)))
-
-(proof: #export n/+|commutativity
- (commutativity (~ (@ n/+)))
- (theorem [@left @right @output]
- (_ [normal (apply2 (~ (@ n/+)) @left @right @output)])
- (apply2 (~ (@ n/+)) @right @left @output)
-
- (axiom "n/+|commutativity")))
-
-(proposition: #export (equality reference sample))
-
-(theorem: #export [t] (is {reference t} {sample t})
- (Test (equality reference sample))
- (.if (.is? reference sample)
- (#_.True (.let [the-axiom (axiom "is")]
- the-axiom))
- (#_.False absurdity)))
-
-(proposition: #export (relation2 rel reference sample))
-
-(proposition: #export (reflexivity rel value)
- (relation2 rel value value))
-
-(proposition: #export (symmetry rel left right)
- (-> (relation2 rel left right)
- (relation2 rel right left)))
-
-(proposition: #export (transitivity rel left mid right)
- (-> [(relation2 rel left mid)
- (relation2 rel mid right)]
- (relation2 rel left right)))
-
-(theorem: #export [t0 t1 t2] ($2 {f (-> t0 t1 t2)}
- {input0 t0}
- {input1 t1})
- [t2 (apply2 f input0 input1 t2)]
- (.let [output ((? f) (? input0) (? input1))]
- [output (axiom)]))
-
-(theorem: (can-commute-n/+ {param .Nat} {subject .Nat})
- .Nat
- (.let [[output apply2] ((? $2) n/+ param subject)
- output|commutes! ((? n/+|commutativity) apply2)]
- output))