blob: db63cde2243030cf7e2b12d8c289815c3fb0df02 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
|
parser:
./a%20b
./"a%20b"
text interpolation and escapes
projection by expression unit tests
fix fakeurlencode test
s/QuotedVariable/VariableQuoted/
success/
operators/
PrecedenceAll1 a ? b || c + d ++ e # f && g ∧ h ⫽ i ⩓ j * k == l != m n.o
PrecedenceAll2 a b != c == d * e ⩓ f ⫽ g ∧ h && i # j ++ k + l || m ? n
LetNoAnnot let x = y in e
LetAnnot let x: T = y in e
EmptyRecordLiteral {=}
ToMap toMap x
ToMapAnnot toMap x : T
VariableQuotedWithSpace ` x `
failure/
AssertNoAnnotation assert
binary decoding:
decode old-style optional literals ?
import:
success/
recover type error
recover recursive import error
failure/
don't recover cycle
normalization:
variables across import boundaries
Text/show ""
TextLitNested1 "${""}${x}"
TextLitNested2 "${"${x}"}"
TextLitNested3 "${"${""}"}${x}"
regression/
NaturalFoldExtraArg Natural/fold 0 (Bool -> Bool) (λ(_ : (Bool -> Bool)) → λ(_ : Bool) → True) (λ(_ : Bool) → False) True
let T = Natural let ap = λ(f : T → List T) -> λ(x : T) -> f x in ap (λ(x : T) -> ap (λ(y : T) -> [x, y]) 1) 0
typecheck:
something that involves destructuring a recordtype after merge
add some of the more complicated Prelude tests back, like List/enumerate
success/
regression/
RecursiveRecordTypeMergeTripleCollision { x : { a : Bool } } ⩓ { x : { b : Bool } } ⩓ { x : { c : Bool } }
somehow test that ({ x = { z = 1 } } ∧ { x = { y = 2 } }).x has a type
somehow test that the recordtype from List/indexed has a type in both empty and nonempty cases
somehow test types added to the Foo/build closures
λ(todo : ∀(a : Type) → a) → todo
let T = 0 in λ(T : Type) → λ(x : T) → 1
(λ(T : Type) → let x = 0 in λ(x : T) → x) : ∀(T : Type) → ∀(x : T) → T
failure/
\(_: Bool) -> assert : (\(_: Bool) -> _) === (\(x: Bool) -> _)
unit/FunctionTypeOutputTypeNotAType Bool -> 1
unit/NestedAnnotInnerWrong (0 : Bool) : Natural
unit/NestedAnnotOuterWrong (0 : Natural) : Bool
merge { x = λ(x : Bool) → x } (< x: Bool | y: Natural >.x True)
merge { x = λ(_ : Bool) → _, y = 1 } < x = True | y >
merge { x = True, y = 1 } < x | y >.x
merge {x=...,y=...} <x>.x
merge {x=...,y=...} <x:T>.x
MergeBool merge x True
LetInSort \(x: let x = 0 in Sort) -> 1
equivalence:
|