1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
|
#![doc(html_root_url = "https://docs.rs/serde_dhall/0.7.5")]
#![warn(missing_docs, missing_doc_code_examples)]
//! [Dhall][dhall] is a programmable configuration language that provides a non-repetitive
//! alternative to JSON and YAML.
//!
//! You can think of Dhall as: JSON + types + imports + functions
//!
//! For a description of the Dhall language, examples, tutorials, and more, see the [language
//! website][dhall].
//!
//! This crate provides support for consuming Dhall files the same way you would consume JSON or
//! YAML. It uses the [Serde][serde] serialization library to provide drop-in support for Dhall
//! for any datatype that supports serde (and that's a lot of them !).
//!
//! # Basic usage
//!
//! ## Deserialization (reading)
//!
//! The entrypoint for deserialization is the [`from_str`](fn.from_str.html) function. It reads a
//! string containing a Dhall expression and deserializes it into any serde-compatible type.
//!
//! This could mean a common Rust type like `HashMap`:
//!
//! ```rust
//! # fn main() -> serde_dhall::Result<()> {
//! use std::collections::HashMap;
//!
//! // Some Dhall data
//! let data = "{ x = 1, y = 1 + 1 } : { x: Natural, y: Natural }";
//!
//! // Deserialize it to a Rust type.
//! let deserialized_map: HashMap<String, u64> = serde_dhall::from_str(data).parse()?;
//!
//! let mut expected_map = HashMap::new();
//! expected_map.insert("x".to_string(), 1);
//! expected_map.insert("y".to_string(), 2);
//!
//! assert_eq!(deserialized_map, expected_map);
//! # Ok(())
//! # }
//! ```
//!
//! or a custom datatype, using serde's `derive` mechanism:
//!
//! ```rust
//! # fn main() -> serde_dhall::Result<()> {
//! use serde::Deserialize;
//!
//! #[derive(Deserialize)]
//! struct Point {
//! x: u64,
//! y: u64,
//! }
//!
//! // Some Dhall data
//! let data = "{ x = 1, y = 1 + 1 } : { x: Natural, y: Natural }";
//!
//! // Convert the Dhall string to a Point.
//! let point: Point = serde_dhall::from_str(data).parse()?;
//! assert_eq!(point.x, 1);
//! assert_eq!(point.y, 2);
//!
//! # Ok(())
//! # }
//! ```
//!
//! ## Serialization (writing)
//!
//! The entrypoint for serialization is the [`serialize`](fn.serialize.html) function. It takes a
//! serde-compatible type value and serializes it to a string containing a Dhall expression.
//!
//! This could mean a common Rust type like `HashMap`:
//!
//! ```rust
//! # fn main() -> serde_dhall::Result<()> {
//! use std::collections::HashMap;
//!
//! let mut map = HashMap::new();
//! map.insert("x".to_string(), 1u64);
//! map.insert("y".to_string(), 2u64);
//!
//! let string = serde_dhall::serialize(&map).to_string()?;
//! assert_eq!(
//! string,
//! "{ x = 1, y = 2 }".to_string(),
//! );
//! # Ok(())
//! # }
//! ```
//!
//! or a custom datatype, using serde's `derive` mechanism:
//!
//! ```rust
//! # fn main() -> serde_dhall::Result<()> {
//! use serde::Serialize;
//!
//! #[derive(Serialize)]
//! struct Point {
//! x: u64,
//! y: u64,
//! }
//!
//! let data = Point { x: 1, y: 2 };
//! let string = serde_dhall::serialize(&data).to_string()?;
//! assert_eq!(
//! string,
//! "{ x = 1, y = 2 }".to_string(),
//! );
//! # Ok(())
//! # }
//! ```
//!
//! Beware that in order to serialize empty options, empty lists or enums correctly, you will need
//! to provide a type annotation!
//!
//! # Replacing `serde_json` or `serde_yaml`
//!
//! If you used to consume JSON or YAML, you only need to replace [`serde_json::from_str`] or
//! [`serde_yaml::from_str`] with [`serde_dhall::from_str(…).parse()`](fn.from_str.html).
//! If you used to produce JSON or YAML, you only need to replace [`serde_json::to_string`] or
//! [`serde_yaml::to_string`] with [`serde_dhall::serialize(…).to_string()`](fn.serialize.html).
//!
//! [`serde_json::from_str`]: https://docs.serde.rs/serde_json/fn.from_str.html
//! [`serde_yaml::from_str`]: https://docs.serde.rs/serde_yaml/fn.from_str.html
//! [`serde_json::to_string`]: https://docs.serde.rs/serde_json/fn.to_string.html
//! [`serde_yaml::to_string`]: https://docs.serde.rs/serde_yaml/fn.to_string.html
//!
//!
//! # Additional type annotations
//!
//! When deserializing, normal type checking is done to ensure that the returned value is a valid
//! Dhall value. However types are
//! first-class in Dhall, and this library allows you to additionally check that the input data
//! matches a given Dhall type. That way, a type error will be caught on the Dhall side, and have
//! pretty and explicit errors that point to the source file.
//!
//! It is also possible to provide a type annotation when serializing. This is useful in particular
//! for types like `HashMap` or [`SimpleValue`] that do not have a fixed type as Dhall values.
//!
//! Moreover, some values (namely empty options, empty lists, and enums) _require_ a type annotation
//! in order to be converted to Dhall, because the resulting Dhall value will contain the type
//! explicitly.
//!
//! There are two ways to provide a type in this way: you can provide it manually or you can let
//! Rust infer it for you. To let Rust infer the appropriate Dhall type, use the
//! [StaticType](trait.StaticType.html) trait.
//!
//! ```rust
//! # fn main() -> serde_dhall::Result<()> {
//! use serde::Deserialize;
//! use serde_dhall::StaticType;
//!
//! #[derive(Deserialize, StaticType)]
//! struct Point {
//! x: u64,
//! y: u64,
//! }
//!
//! // Some Dhall data
//! let data = "{ x = 1, y = 1 + 1 }";
//!
//! // Convert the Dhall string to a Point.
//! let point = serde_dhall::from_str(data)
//! .static_type_annotation()
//! .parse::<Point>()?;
//! assert_eq!(point.x, 1);
//! assert_eq!(point.y, 2);
//!
//! // Invalid data fails the type validation
//! let invalid_data = "{ x = 1, z = 0.3 }";
//! assert!(
//! serde_dhall::from_str(invalid_data)
//! .static_type_annotation()
//! .parse::<Point>()
//! .is_err()
//! );
//! # Ok(())
//! # }
//! ```
//!
//! ```
//! # fn main() -> serde_dhall::Result<()> {
//! use serde::Serialize;
//! use serde_dhall::{serialize, StaticType};
//!
//! #[derive(Serialize, StaticType)]
//! enum MyOption {
//! MyNone,
//! MySome(u64),
//! }
//!
//! let data = MyOption::MySome(0);
//! let string = serialize(&data)
//! .static_type_annotation()
//! .to_string()?;
//! // The resulting Dhall string depends on the type annotation; it could not have been
//! // printed without it.
//! assert_eq!(string, "< MyNone | MySome: Natural >.MySome 0".to_string());
//! # Ok(())
//! # }
//! ```
//!
//! To provide a type manually, you need a [`SimpleType`](enum.SimpleType.html) value. You
//! can parse it from some Dhall text like you would parse any other value.
//!
//! ```rust
//! # fn main() -> serde_dhall::Result<()> {
//! use serde_dhall::SimpleType;
//! use std::collections::HashMap;
//!
//! // Parse a Dhall type
//! let point_type_str = "{ x: Natural, y: Natural }";
//! let point_type = serde_dhall::from_str(point_type_str).parse::<SimpleType>()?;
//!
//! // Some Dhall data
//! let point_data = "{ x = 1, y = 1 + 1 }";
//!
//! // Deserialize the data to a Rust type. This checks that
//! // the data matches the provided type.
//! let deserialized_map = serde_dhall::from_str(point_data)
//! .type_annotation(&point_type)
//! .parse::<HashMap<String, u64>>()?;
//!
//! let mut expected_map = HashMap::new();
//! expected_map.insert("x".to_string(), 1);
//! expected_map.insert("y".to_string(), 2);
//!
//! assert_eq!(deserialized_map, expected_map);
//! # Ok(())
//! # }
//! ```
//!
//! ```
//! # fn main() -> serde_dhall::Result<()> {
//! use serde_dhall::{serialize, from_str, SimpleValue};
//!
//! let ty = from_str("< A | B: Bool >").parse()?;
//! let data = SimpleValue::Union("A".to_string(), None);
//! let string = serialize(&data)
//! .type_annotation(&ty)
//! .to_string()?;
//! assert_eq!(string, "< A | B: Bool >.A".to_string());
//! # Ok(())
//! # }
//! ```
//!
//! # Controlling deserialization
//!
//! If you need more control over the process of reading Dhall values, e.g. disabling
//! imports, see the [`Deserializer`] methods.
//!
//! [`Deserializer`]: struct.Deserializer.html
//! [`SimpleValue`]: enum.SimpleValue.html
//! [dhall]: https://dhall-lang.org/
//! [serde]: https://docs.serde.rs/serde/
//! [serde::Deserialize]: https://docs.serde.rs/serde/trait.Deserialize.html
#[cfg(doctest)]
mod test_readme {
doc_comment::doctest!("../../README.md");
}
mod deserialize;
mod error;
mod options;
mod serialize;
mod static_type;
/// Dhall values
mod value;
#[doc(hidden)]
pub use dhall_proc_macros::StaticType;
pub use deserialize::{from_simple_value, FromDhall};
pub(crate) use error::ErrorKind;
pub use error::{Error, Result};
pub use options::de::{from_file, from_str, Deserializer};
pub use options::ser::{serialize, Serializer};
pub use serialize::ToDhall;
pub use static_type::StaticType;
pub use value::{NumKind, SimpleType, SimpleValue, Value};
|