summaryrefslogtreecommitdiff
path: root/dhall_parser/src/dhall.abnf
blob: d27554ceb187f0b61575777f721be4241937024d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
; ABNF syntax based on RFC 5234
;
; The character encoding for Dhall is UTF-8
;
; Some notes on implementing this grammar:
;
; First, do not use a lexer to tokenize the file before parsing.  Instead, treat
; the individual characters of the file as the tokens to feed into the parser.
; You should not use a lexer because Dhall's grammar supports two features which
; cannot be correctly supported by a lexer:
;
; * String interpolation (i.e. "foo ${Natural/toInteger bar} baz")
; * Nested block comments (i.e. "{- foo {- bar -} baz -}")
;
; Second, this grammar assumes that your parser can backtrack and/or try
; multiple parses simultaneously.  For example, consider this expression:
;
;     List ./MyType
;
; A parser might first try to parse the period as the beginning of a field
; selector, only to realize immediately afterwards that `/MyType` is not a valid
; name for a field.  A conforming parser must backtrack so that the expression
; `./MyType` can instead be correctly interpreted as a relative path
;
; Third, if there are multiple valid parses then prefer the first parse
; according to the ordering of alternatives. That is, the order of evaluation
; of the alternatives is left-to-right.
;
; For example, the grammar for single quoted string literals is:
;
;     single-quote-continue =
;           "'''"               single-quote-continue
;         / "${" complete-expression "}" single-quote-continue
;         / "''${"              single-quote-continue
;         / "''"
;         / %x20-10FFFF         single-quote-continue
;         / tab                 single-quote-continue
;         / end-of-line         single-quote-continue
;
;         single-quote-literal = "''" single-quote-continue
;
; ... which permits valid parses for the following code:
;
;     "''''''''''''''''"
;
; If you tried to parse all alternatives then there are at least two valid
; interpretations for the above code:
;
; * A single quoted literal with four escape sequences of the form "'''"
;     * i.e. "''" followed by "'''"  four times in a row followed by "''"
; * Four empty single quoted literals
;     * i.e. "''''" four times in a row
;
; The correct interpretation is the first one because parsing the escape
; sequence "'''" takes precedence over parsing the termination sequence "''",
; according to the order of the alternatives in the `single-quote-continue`
; rule.
;
; Some parsing libraries do not backtrack by default but allow the user to
; selectively backtrack in certain parts of the grammar.  Usually parsing
; libraries do this to improve efficiency and error messages.  Dhall's grammar
; takes that into account by minimizing the number of rules that require the
; parser to backtrack and comments below will highlight where you need to
; explicitly backtrack
;
; Specifically, if you see an uninterrupted literal in a grammar rule such as:
;
;     "->"
;
; ... or:
;
;     %x66.6f.72.61.6c.6c
;
; ... then that string literal is parsed as a single unit, meaning that you
; should backtrack if you parse only part of the literal
;
; In all other cases you can assume that you do not need to backtrack unless
; there is a comment explicitly asking you to backtrack
;
; When parsing a repeated construct, prefer alternatives that parse as many
; repetitions as possible.  On in other words:
;
;     [a] = a / ""
;
;     a* = a* a / ""
;
; Note that the latter rule also specifies that repetition produces
; left-associated expressions.  For example, function application is
; left-associative and all operators are left-associative when they are not
; parenthesized.
;
; Additionally, try alternatives in an order that minimizes backtracking
; according to the following rule:
;
;     (a / b) (c / d) = a c / a d / b c / b d

; NOTE: There are many line endings in the wild
;
; See: https://en.wikipedia.org/wiki/Newline
;
; For simplicity this supports Unix and Windows line-endings, which are the most
; common
end-of-line-silent =
      %x0A     ; "\n"
    / %x0D.0A  ; "\r\n"
end-of-line = end-of-line-silent

tab = %x09  ; "\t"

block-comment = "{-" block-comment-continue

block-comment-chunk =
      block-comment
    / %x20-10FFFF
    / tab
    / end-of-line-silent

block-comment-continue = "-}" / block-comment-chunk block-comment-continue

not-end-of-line = %x20-10FFFF / tab

; NOTE: Slightly different from Haskell-style single-line comments because this
; does not require a space after the dashes
line-comment = "--" *not-end-of-line end-of-line-silent

whitespace-chunk =
      " "
    / tab
    / end-of-line-silent
    / line-comment
    / block-comment

whitespace = *whitespace-chunk

nonempty-whitespace = 1*whitespace-chunk

; Uppercase or lowercase ASCII letter
ALPHA = %x41-5A / %x61-7A

; ASCII digit
DIGIT = %x30-39  ; 0-9

HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"

; A simple label cannot be one of the following reserved keywords:
;
; * if
; * then
; * else
; * let
; * in
; * as
; * using
; * merge
; * missing
; * Infinity
; * Some
simple-label-first-char = ALPHA / "_"
simple-label-next-char = ALPHA / DIGIT / "-" / "/" / "_"
simple-label = simple-label-first-char *simple-label-next-char

quoted-label-char =
      %x20-5F
        ; %x60 = '`'
    / %x61-7E

quoted-label = 1*quoted-label-char

; NOTE: Dhall does not support Unicode labels, mainly to minimize the potential
; for code obfuscation
; A label cannot not be any of the reserved identifiers for builtins (unless quoted).
; Their list can be found in semantics.md. This is not enforced by the grammar but
; should be checked by implementations. The only place where this restriction applies
; is bound variables.
label = ("`" quoted-label "`" / simple-label)

; An any-label is allowed to be one of the reserved identifiers.
any-label = label


; Dhall's double-quoted strings are equivalent to JSON strings except with
; support for string interpolation (and escaping string interpolation)
;
; Dhall uses almost the same escaping rules as JSON (RFC7159) with one
; exception: Dhall adds a new `\$` escape sequence for dollar signs.  This
; additional escape sequences lets you escape string interpolation by writing
; `\${`
;
; > The representation of strings is similar to conventions used in the C
; > family of programming languages.  A string begins and ends with
; > quotation marks.  All Unicode characters may be placed within the
; > quotation marks, except for the characters that must be escaped:
; > quotation mark, reverse solidus, and the control characters (U+0000
; > through U+001F).
; > 
; > Any character may be escaped.  If the character is in the Basic
; > Multilingual Plane (U+0000 through U+FFFF), then it may be
; > represented as a six-character sequence: a reverse solidus, followed
; > by the lowercase letter u, followed by four hexadecimal digits that
; > encode the character's code point.  The hexadecimal letters A though
; > F can be upper or lower case.  So, for example, a string containing
; > only a single reverse solidus character may be represented as
; > "\u005C".
; > 
; > Alternatively, there are two-character sequence escape
; > representations of some popular characters.  So, for example, a
; > string containing only a single reverse solidus character may be
; > represented more compactly as "\\".
; > 
; > To escape an extended character that is not in the Basic Multilingual
; > Plane, the character is represented as a 12-character sequence,
; > encoding the UTF-16 surrogate pair.  So, for example, a string
; > containing only the G clef character (U+1D11E) may be represented as
; > "\uD834\uDD1E".
double-quote-chunk =
      interpolation
      ; '\'
    / %x5C double-quote-escaped 
    / double-quote-char

double-quote-escaped =
      %x22               ; '"'    quotation mark  U+0022
    / %x24               ; '$'    dollar sign     U+0024
    / %x5C               ; '\'    reverse solidus U+005C
    / %x2F               ; '/'    solidus         U+002F
    / %x62               ; 'b'    backspace       U+0008
    / %x66               ; 'f'    form feed       U+000C
    / %x6E               ; 'n'    line feed       U+000A
    / %x72               ; 'r'    carriage return U+000D
    / %x74               ; 't'    tab             U+0009
    / %x75 4HEXDIG       ; 'uXXXX'                U+XXXX

; Printable characters except double quote and backslash
double-quote-char =
      %x20-21
        ; %x22 = '"'
    / %x23-5B
        ; %x5C = "\"
    / %x5D-10FFFF

double-quote-literal = %x22 *double-quote-chunk %x22

; NOTE: The only way to end a single-quote string literal with a single quote is
; to either interpolate the single quote, like this:
;
;     ''ABC${"'"}''
;
; ... or concatenate another string, like this:
;
;     ''ABC'' ++ "'"
;
; If you try to end the string literal with a single quote then you get "'''",
; which is interpreted as an escaped pair of single quotes
single-quote-continue =
      interpolation single-quote-continue
    / escaped-quote-pair single-quote-continue
    / escaped-interpolation single-quote-continue
    / single-quote-char single-quote-continue
    / "''" ; End of text literal

; Escape two single quotes (i.e. replace this sequence with "''")
escaped-quote-pair = "'''"

; Escape interpolation (i.e. replace this sequence with "${")
escaped-interpolation = "''${"

single-quote-char =
      %x20-10FFFF
    / tab
    / end-of-line

single-quote-literal = "''" end-of-line single-quote-continue

; Interpolation
interpolation = "${" complete-expression "}"

text-literal = (double-quote-literal / single-quote-literal)

; RFC 5234 interprets string literals as case-insensitive and recommends using
; hex instead for case-sensitive strings
;
; If you don't feel like reading hex, these are all the same as the rule name,
; except without the '' ending.
; Keywords that should never be parsed as identifiers
if                = %x69.66
then              = %x74.68.65.6e
else              = %x65.6c.73.65
let               = %x6c.65.74
in                = %x69.6e
as                = %x61.73
using             = %x75.73.69.6e.67
merge             = %x6d.65.72.67.65
missing           = %x6d.69.73.73.69.6e.67
Infinity          = %x49.6e.66.69.6e.69.74.79
; Reserved identifiers, only needed for some special cases of parsing
Optional              = %x4f.70.74.69.6f.6e.61.6c
Text                  = %x54.65.78.74
List                  = %x4c.69.73.74
NaN               = %x4e.61.4e
Some              = %x53.6f.6d.65

combine       = %x2227 / "/\"
combine-types = %x2A53 / "//\\"
prefer        = %x2AFD / "//"
lambda        = %x3BB  / "\"
forall        = %x2200 / %x66.6f.72.61.6c.6c
arrow         = %x2192 / "->"

exponent = "e" [ "+" / "-" ] 1*DIGIT

double-literal = [ "+" / "-" ] 1*DIGIT ( "." 1*DIGIT [ exponent ] / exponent)

natural-literal = 1*DIGIT

integer-literal = ( "+" / "-" ) natural-literal

; The implementation should recognize reserved names for builtins and treat them as special
; values instead of variables.
identifier = any-label [ whitespace "@" whitespace natural-literal ]

; Printable characters other than " ()[]{}<>/\,"
;
; Excluding those characters ensures that paths don't have to end with trailing
; whitespace most of the time
path-character =
        ; %x20 = " "
      %x21
        ; %x22 = "\""
        ; %x23 = "#"
    / %x24-27
        ; %x28 = "("
        ; %x29 = ")"
    / %x2A-2B
        ; %x2C = ","
    / %x2D-2E
        ; %x2F = "/"
    / %x30-3B
        ; %x3C = "<"
    / %x3D
        ; %x3E = ">"
        ; %x3F = "?"
    / %x40-5A
        ; %x5B = "["
        ; %x5C = "\"
        ; %x5D = "]"
    / %x5E-7A
        ; %x7B = "{"
    / %x7C
        ; %x7D = "}"
    / %x7E

quoted-path-character =
      %x20-21
        ; %x22 = "\""
    / %x23-2E
        ; %x2F = "/"
    / %x30-10FFFF

unquoted-path-component = 1*path-character
quoted-path-component = 1*quoted-path-character

path-component = "/" ( unquoted-path-component / %x22 quoted-path-component %x22 )

path = 1*path-component

local =
    parent-path
    / here-path
    / home-path
    ; NOTE: Backtrack if parsing this alternative fails
    ;
    ; This is because the first character of this alternative will be "/", but
    ; if the second character is "/" or "\" then this should have been parsed
    ; as an operator instead of a path
    / absolute-path

parent-path = ".." path  ; Relative path
here-path = "."  path  ; Relative path
home-path = "~"  path  ; Home-anchored path
absolute-path = path  ; Absolute path

; `http[s]` URI grammar based on RFC7230 and RFC 3986 with some differences
; noted below

scheme = %x68.74.74.70 [ %x73 ]  ; "http" [ "s" ]

; NOTE: This does not match the official grammar for a URI.  Specifically:
;
; * this replaces `path-abempty` with `path`, so an empty path is
;   not valid
; * this does not support fragment identifiers, which have no meaning within
;   Dhall expressions and do not affect import resolution
http-raw = scheme "://" authority path [ "?" query ]

; NOTE: Backtrack if parsing the optional user info prefix fails
authority = [ userinfo "@" ] host [ ":" port ]

userinfo = *( unreserved / pct-encoded / sub-delims / ":" )

host = IP-literal / IPv4address / reg-name

port = *DIGIT

IP-literal = "[" ( IPv6address / IPvFuture  ) "]"

IPvFuture = "v" 1*HEXDIG "." 1*( unreserved / sub-delims / ":" )

; NOTE: Backtrack when parsing each alternative
IPv6address =                            6( h16 ":" ) ls32
            /                       "::" 5( h16 ":" ) ls32
            / [               h16 ] "::" 4( h16 ":" ) ls32
            / [ *1( h16 ":" ) h16 ] "::" 3( h16 ":" ) ls32
            / [ *2( h16 ":" ) h16 ] "::" 2( h16 ":" ) ls32
            / [ *3( h16 ":" ) h16 ] "::"    h16 ":"   ls32
            / [ *4( h16 ":" ) h16 ] "::"              ls32
            / [ *5( h16 ":" ) h16 ] "::"              h16
            / [ *6( h16 ":" ) h16 ] "::"

h16 = 1*4HEXDIG

ls32 = ( h16 ":" h16 ) / IPv4address

IPv4address = dec-octet "." dec-octet "." dec-octet "." dec-octet

; NOTE: Backtrack when parsing these alternatives and try them in reverse order
dec-octet = DIGIT              ; 0-9
          / %x31-39 DIGIT      ; 10-99
          / "1" 2DIGIT         ; 100-199
          / "2" %x30-34 DIGIT  ; 200-249
          / "25" %x30-35       ; 250-255

reg-name = *( unreserved / pct-encoded / sub-delims )

pchar = unreserved / pct-encoded / sub-delims / ":" / "@"

query = *( pchar / "/" / "?" )

pct-encoded = "%" HEXDIG HEXDIG

unreserved  = ALPHA / DIGIT / "-" / "." / "_" / "~"

sub-delims = "!" / "$" / "&" / "'" / "(" / ")" / "*" / "+" / "," / ";" / "="

http =
    http-raw
    [ whitespace using nonempty-whitespace (import-hashed / "(" whitespace import-hashed whitespace ")") ]

; Dhall supports unquoted environment variables that are Bash-compliant or
; quoted environment variables that are POSIX-compliant
env = "env:"
    ( bash-environment-variable
    / %x22 posix-environment-variable %x22
    )

; Bash supports a restricted subset of POSIX environment variables.  From the
; Bash `man` page, an environment variable name is:
;
; > A word consisting only of  alphanumeric  characters  and  under-scores,  and
; > beginning with an alphabetic character or an under-score
bash-environment-variable = (ALPHA / "_") *(ALPHA / DIGIT / "_")

; The POSIX standard is significantly more flexible about legal environment
; variable names, which can contain alerts (i.e. '\a'), whitespace, or
; punctuation, for example.  The POSIX standard says about environment variable
; names:
;
; > The value of an environment variable is a string of characters. For a
; > C-language program, an array of strings called the environment shall be made
; > available when a process begins. The array is pointed to by the external
; > variable environ, which is defined as:
; >
; >     extern char **environ;
; >
; > These strings have the form name=value; names shall not contain the
; > character '='. For values to be portable across systems conforming to IEEE
; > Std 1003.1-2001, the value shall be composed of characters from the portable
; > character set (except NUL and as indicated below).
;
; Note that the standard does not explicitly state that the name must have at
; least one character, but `env` does not appear to support this and `env`
; claims to be POSIX-compliant.  To be safe, Dhall requires at least one
; character like `env`
posix-environment-variable = 1*posix-environment-variable-character

; These are all the characters from the POSIX Portable Character Set except for 
; '\0' (NUL) and '='.  Note that the POSIX standard does not explicitly state
; that environment variable names cannot have NUL.  However, this is implicit
; in the fact that environment variables are passed to the program as
; NUL-terminated `name=value` strings, which implies that the `name` portion of
; the string cannot have NUL characters
posix-environment-variable-character =
      %x5C                 ; '\'    Beginning of escape sequence
      ( %x22               ; '"'    quotation mark  U+0022
      / %x5C               ; '\'    reverse solidus U+005C
      / %x61               ; 'a'    alert           U+0007
      / %x62               ; 'b'    backspace       U+0008
      / %x66               ; 'f'    form feed       U+000C
      / %x6E               ; 'n'    line feed       U+000A
      / %x72               ; 'r'    carriage return U+000D
      / %x74               ; 't'    tab             U+0009
      / %x76               ; 'v'    vertical tab    U+000B
      )
    ; Printable characters except double quote, backslash and equals
    / %x20-21
        ; %x22 = '"'
    / %x23-3C
        ; %x3D = '='
    / %x3E-5B
        ; %x5C = "\"
    / %x5D-7E

import-type = missing / local / http / env

hash = %x73.68.61.32.35.36.3a 64HEXDIG  ; "sha256:XXX...XXX"

import-hashed = import-type [ whitespace hash ]

; "http://example.com"
; "./foo/bar"
; "env:FOO"
import = import-hashed [ whitespace as nonempty-whitespace Text ]

; NOTE: Every rule past this point should only reference rules that end with
; whitespace.  This ensures consistent handling of whitespace in the absence of
; a separate lexing step.
; The exception is the rules ending in , which should _not_ end in whitespace.
; This is important to avoid the need for sequential backtracking in application-expression.

expression =
    lambda-expression
    / ifthenelse-expression
    / let-expression
    / forall-expression
    ; NOTE: Backtrack if parsing this alternative fails
    / arrow-expression
    / merge-expression
    ; NOTE: Backtrack if parsing this alternative fails since we can't tell
    ; from the opening bracket whether or not this will be an empty list or
    ; a non-empty list
    / empty-list-or-optional
    / annotated-expression

; "\(x : a) -> b"
lambda-expression = lambda whitespace "(" whitespace label whitespace ":" nonempty-whitespace expression ")" whitespace arrow whitespace expression

; "if a then b else c"
ifthenelse-expression = if nonempty-whitespace expression then nonempty-whitespace expression else nonempty-whitespace expression

; "let x : t = e1 in e2"
; "let x     = e1 in e2"
; "let x = e1 let y = e2 in e3"
let-expression = 1*let-binding in nonempty-whitespace expression
let-binding = let nonempty-whitespace label whitespace [ ":" nonempty-whitespace expression ] "=" whitespace expression

; "forall (x : a) -> b"
forall-expression = forall whitespace "(" whitespace label whitespace ":" nonempty-whitespace expression ")" whitespace arrow whitespace expression

; "a -> b"
arrow-expression = operator-expression arrow whitespace expression

; "merge e1 e2 : t"
; "merge e1 e2"
merge-expression = merge nonempty-whitespace import-expression whitespace import-expression whitespace [ ":" nonempty-whitespace application-expression ]

; "[]  : List     t"
; "[]  : Optional t"
; "[x] : Optional t"
empty-list-or-optional = "[" whitespace (empty-collection / non-empty-optional)
empty-collection = "]" whitespace ":" nonempty-whitespace (List whitespace / Optional whitespace) import-expression whitespace
non-empty-optional = expression "]" whitespace ":" nonempty-whitespace Optional whitespace import-expression whitespace

; "x : t"
annotated-expression = operator-expression [ ":" nonempty-whitespace expression ]


operator-expression = import-alt-expression

import-alt-expression    = or-expression            *("?" nonempty-whitespace    or-expression)
or-expression            = plus-expression          *("||" whitespace            plus-expression         )
plus-expression          = text-append-expression   *("+" nonempty-whitespace          text-append-expression  )
text-append-expression   = list-append-expression   *("++" whitespace   list-append-expression  )
list-append-expression   = and-expression           *("#" whitespace   and-expression          )
and-expression           = combine-expression       *("&&" whitespace           combine-expression      )
combine-expression       = prefer-expression        *(combine whitespace       prefer-expression       )
prefer-expression        = combine-types-expression *(prefer whitespace        combine-types-expression)
combine-types-expression = times-expression         *(combine-types whitespace times-expression        )
times-expression         = equal-expression         *("*" whitespace         equal-expression        )
equal-expression         = not-equal-expression     *("==" whitespace  not-equal-expression    )
not-equal-expression     = application-expression   *("!=" whitespace     application-expression  )

; Import expressions need to be separated by some whitespace, otherwise there
; would be ambiguity: `./ab` could be interpreted as "import the file `./ab`",
; or "apply the import `./a` to label `b`"
application-expression =
    import-expression *(nonempty-whitespace import-expression) whitespace

import-expression =
      import
    / selector-expression

; `record.field` extracts one field of a record
; `record.{ field0, field1, field2 }` projects out several fields of a record
;
; NOTE: Backtrack when parsing the `*(dot ...)`.  The reason why is that you
; can't tell from parsing just the period whether "foo." will become "foo.bar"
; (i.e. accessing field `bar` of the record `foo`) or `foo./bar` (i.e. applying
; the function `foo` to the relative path `./bar`)
selector-expression = primitive-expression *(whitespace "." whitespace selector)

selector = any-label / labels

labels = "{" whitespace [ any-label whitespace *("," whitespace any-label whitespace) ] "}"


primitive-expression =
      literal-expression
    / "{" whitespace record-type-or-literal "}"
    / "<" whitespace union-type-or-literal ">"
    / non-empty-list-literal
    / parenthesized-expression

; NOTE: Backtrack when parsing the first three alternatives (i.e. the numeric
; literals).  This is because they share leading characters in common
literal-expression =
    ; "2.0"
      double-literal
    
    ; "2"
    / natural-literal
    
    ; "+2"
    / integer-literal
    
    ; "-Infinity"
    / minus-infinity-literal
    ; "Infinity"
    / plus-infinity-literal
    ; "NaN"
    / NaN
    
    ; '"ABC"'
    / text-literal
    
    ; "x"
    ; "x@2"
    / identifier

minus-infinity-literal = "-" Infinity
plus-infinity-literal = Infinity

; "{ foo = 1      , bar = True }"
; "{ foo : Integer, bar : Bool }"
record-type-or-literal =
      empty-record-literal
    / non-empty-record-type-or-literal
    / empty-record-type
empty-record-literal = "=" whitespace
empty-record-type = ""
non-empty-record-type-or-literal =
    any-label whitespace (non-empty-record-literal / non-empty-record-type)
non-empty-record-type    = ":" nonempty-whitespace expression *("," whitespace record-type-entry)
record-type-entry = any-label whitespace ":" nonempty-whitespace expression
non-empty-record-literal = "=" whitespace expression *("," whitespace record-literal-entry)
record-literal-entry = any-label whitespace "=" whitespace expression

; "< Foo : Integer | Bar : Bool >"
; "< Foo : Integer | Bar = True >"
union-type-or-literal =
      non-empty-union-type-or-literal
    / empty-union-type
empty-union-type = ""
non-empty-union-type-or-literal =
    any-label whitespace
    ( "=" whitespace expression union-type-entries
    / ":" nonempty-whitespace expression [ "|" whitespace non-empty-union-type-or-literal ]
    )
union-type-entries = *("|" whitespace union-type-entry)
union-type-entry = any-label whitespace ":" nonempty-whitespace expression

; "[1, 2, 3]"
; `empty-list-or-optional` handles empty lists
non-empty-list-literal = "[" whitespace expression *("," whitespace expression) "]"

; "( e )"
parenthesized-expression = "(" whitespace expression ")"


; All expressions end with trailing whitespace.  This just adds a final
; whitespace prefix for the top-level of the program
complete-expression = whitespace expression