summaryrefslogtreecommitdiff
path: root/dhall_normalize/src/normalize.rs
blob: 1fa5524e39d92a4d4d22269c047a374a44bf3022 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#![allow(non_snake_case)]
use std::fmt;
use dhall_core::core::*;

/// Reduce an expression to its normal form, performing beta reduction
///
/// `normalize` does not type-check the expression.  You may want to type-check
/// expressions before normalizing them since normalization can convert an
/// ill-typed expression into a well-typed expression.
///
/// However, `normalize` will not fail if the expression is ill-typed and will
/// leave ill-typed sub-expressions unevaluated.
///
pub fn normalize<'i, S, T, A>(e: &Expr<'i, S, A>) -> Expr<'i, T, A>
where
    S: Clone + fmt::Debug,
    T: Clone + fmt::Debug,
    A: Clone + fmt::Debug,
{
    use dhall_core::BinOp::*;
    use dhall_core::Builtin::*;
    use dhall_core::Expr::*;
    match *e {
        Const(k) => Const(k),
        Var(v) => Var(v),
        Lam(x, ref tA, ref b) => {
            let tA2 = normalize(tA);
            let b2 = normalize(b);
            Lam(x, bx(tA2), bx(b2))
        }
        Pi(x, ref tA, ref tB) => {
            let tA2 = normalize(tA);
            let tB2 = normalize(tB);
            pi(x, tA2, tB2)
        }
        App(ref f, ref a) => match normalize::<S, T, A>(f) {
            Lam(x, _A, b) => {
                // Beta reduce
                let vx0 = V(x, 0);
                let a2 = shift::<S, S, A>(1, vx0, a);
                let b2 = subst::<S, T, A>(vx0, &a2, &b);
                let b3 = shift::<S, T, A>(-1, vx0, &b2);
                normalize(&b3)
            }
            f2 => match (f2, normalize::<S, T, A>(a)) {
                // fold/build fusion for `List`
                (App(box Builtin(ListBuild), _), App(box App(box Builtin(ListFold), _), box e2)) |
                (App(box Builtin(ListFold), _), App(box App(box Builtin(ListBuild), _), box e2)) |

                // fold/build fusion for `Natural`
                (Builtin(NaturalBuild), App(box Builtin(NaturalFold), box e2)) |
                (Builtin(NaturalFold), App(box Builtin(NaturalBuild), box e2)) => normalize(&e2),

            /*
                App (App (App (App NaturalFold (NaturalLit n0)) _) succ') zero ->
                    normalize (go n0)
                  where
                    go !0 = zero
                    go !n = App succ' (go (n - 1))
                App NaturalBuild k
                    | check     -> NaturalLit n
                    | otherwise -> App f' a'
                  where
                    labeled =
                        normalize (App (App (App k Natural) "Succ") "Zero")

                    n = go 0 labeled
                      where
                        go !m (App (Var "Succ") e') = go (m + 1) e'
                        go !m (Var "Zero")          = m
                        go !_  _                    = internalError text
                    check = go labeled
                      where
                        go (App (Var "Succ") e') = go e'
                        go (Var "Zero")          = True
                        go  _                    = False
                        */
                (Builtin(NaturalIsZero), NaturalLit(n)) => BoolLit(n == 0),
                (Builtin(NaturalEven), NaturalLit(n)) => BoolLit(n % 2 == 0),
                (Builtin(NaturalOdd), NaturalLit(n)) => BoolLit(n % 2 != 0),
                (Builtin(NaturalToInteger), NaturalLit(n)) => IntegerLit(n as isize),
                (Builtin(NaturalShow), NaturalLit(n)) => TextLit(n.to_string()),
                (App(f@box Builtin(ListBuild), box t), k) => {
                        let labeled =
                            normalize::<_, T, _>(&app(app(app(k.clone(), app(
                                Builtin(self::Builtin::List), t.clone())), "Cons"), "Nil"));

                        fn list_to_vector<'i, S, A>(v: &mut Vec<Expr<'i, S, A>>, e: Expr<'i, S, A>)
                            where S: Clone, A: Clone
                        {
                            match e {
                                App(box App(box Var(V("Cons", _)), box x), box e2) => {
                                    v.push(x);
                                    list_to_vector(v, e2)
                                }
                                Var(V("Nil", _)) => {}
                                _ => panic!("internalError list_to_vector"),
                            }
                        }
                        fn check<S, A>(e: &Expr<S, A>) -> bool {
                            match *e {
                                App(box App(box Var(V("Cons", _)), _), ref e2) => check(e2),
                                Var(V("Nil", _)) => true,
                                _ => false,
                            }
                        }

                        if check(&labeled) {
                            let mut v = vec![];
                            list_to_vector(&mut v, labeled);
                            ListLit(Some(bx(t)), v)
                        } else {
                            app(App(f, bx(t)), k)
                        }
                    }
                (App(box App(box App(box App(box Builtin(ListFold), _), box ListLit(_, xs)), _), cons), nil) => {
                    let e2: Expr<_, _> = xs.into_iter().rev().fold(nil, |y, ys| // foldr
                        App(bx(App(cons.clone(), bx(y))), bx(ys))
                    );
                    normalize(&e2)
                }
                (App(f, x_), ListLit(t, ys)) => match *f {
                    Builtin(ListLength) =>
                        NaturalLit(ys.len()),
                    Builtin(ListHead) =>
                        normalize(&OptionalLit(t, ys.into_iter().take(1).collect())),
                    Builtin(ListLast) =>
                        normalize(&OptionalLit(t, ys.into_iter().last().into_iter().collect())),
                    Builtin(ListReverse) => {
                        let mut xs = ys;
                        xs.reverse();
                        normalize(&ListLit(t, xs))
                    }
                    _ => app(App(f, x_), ListLit(t, ys)),
                },
                /*
                App (App ListIndexed _) (ListLit t xs) ->
                    normalize (ListLit t' (fmap adapt (Data.Vector.indexed xs)))
                  where
                    t' = Record (Data.Map.fromList kts)
                      where
                        kts = [ ("index", Natural)
                              , ("value", t)
                              ]
                    adapt (n, x) = RecordLit (Data.Map.fromList kvs)
                      where
                        kvs = [ ("index", NaturalLit (fromIntegral n))
                              , ("value", x)
                              ]
            */
                (App(box App(box App(box App(box Builtin(OptionalFold), _), box OptionalLit(_, xs)), _), just), nothing) => {
                    let e2: Expr<_, _> = xs.into_iter().fold(nothing, |y, _|
                        App(just.clone(), bx(y))
                    );
                    normalize(&e2)
                }
                (App(box Builtin(OptionalBuild), _), App(box App(box Builtin(OptionalFold), _), b)) => {
                    normalize(&b)
                }
                (App(box Builtin(OptionalBuild), a0), g) => {
                    let e2: Expr<_, _> = app(app(app(g,
                        App(bx(Builtin(Optional)), a0.clone())),
                            Lam("x", a0.clone(),
                                bx(OptionalLit(Some(a0.clone()), vec![Var(V("x", 0))])))),
                            OptionalLit(Some(a0), vec![]));
                    normalize(&e2)
                }
                (f2, a2) => app(f2, a2),
            },
        },
        Let(f, _, ref r, ref b) => {
            let r2 = shift::<_, S, _>(1, V(f, 0), r);
            let b2 = subst(V(f, 0), &r2, b);
            let b3 = shift::<_, T, _>(-1, V(f, 0), &b2);
            normalize(&b3)
        }
        Annot(ref x, _) => normalize(x),
        Builtin(v) => Builtin(v),
        BoolLit(b) => BoolLit(b),
        BinOp(BoolAnd, ref x, ref y) => with_binop(
            BoolAnd,
            Expr::bool_lit,
            |xn, yn| BoolLit(xn && yn),
            normalize(x),
            normalize(y),
        ),
        BinOp(BoolOr, ref x, ref y) => with_binop(
            BoolOr,
            Expr::bool_lit,
            |xn, yn| BoolLit(xn || yn),
            normalize(x),
            normalize(y),
        ),
        BinOp(BoolEQ, ref x, ref y) => with_binop(
            BoolEQ,
            Expr::bool_lit,
            |xn, yn| BoolLit(xn == yn),
            normalize(x),
            normalize(y),
        ),
        BinOp(BoolNE, ref x, ref y) => with_binop(
            BoolNE,
            Expr::bool_lit,
            |xn, yn| BoolLit(xn != yn),
            normalize(x),
            normalize(y),
        ),
        BoolIf(ref b, ref t, ref f) => match normalize(b) {
            BoolLit(true) => normalize(t),
            BoolLit(false) => normalize(f),
            b2 => BoolIf(bx(b2), bx(normalize(t)), bx(normalize(f))),
        },
        NaturalLit(n) => NaturalLit(n),
        BinOp(NaturalPlus, ref x, ref y) => with_binop(
            NaturalPlus,
            Expr::natural_lit,
            |xn, yn| NaturalLit(xn + yn),
            normalize(x),
            normalize(y),
        ),
        BinOp(NaturalTimes, ref x, ref y) => with_binop(
            NaturalTimes,
            Expr::natural_lit,
            |xn, yn| NaturalLit(xn * yn),
            normalize(x),
            normalize(y),
        ),
        IntegerLit(n) => IntegerLit(n),
        DoubleLit(n) => DoubleLit(n),
        TextLit(ref t) => TextLit(t.clone()),
        BinOp(TextAppend, ref x, ref y) => with_binop(
            TextAppend,
            Expr::text_lit,
            |xt, yt| TextLit(xt + &yt),
            normalize(x),
            normalize(y),
        ),
        ListLit(ref t, ref es) => {
            let t2 = t.as_ref().map(|x| x.as_ref()).map(normalize).map(bx);
            let es2 = es.iter().map(normalize).collect();
            ListLit(t2, es2)
        }
        OptionalLit(ref t, ref es) => {
            let t2 = t.as_ref().map(|x| x.as_ref()).map(normalize).map(bx);
            let es2 = es.iter().map(normalize).collect();
            OptionalLit(t2, es2)
        }
        Record(ref kts) => Record(map_record_value(kts, normalize)),
        RecordLit(ref kvs) => RecordLit(map_record_value(kvs, normalize)),
        Union(ref kts) => Union(map_record_value(kts, normalize)),
        UnionLit(k, ref v, ref kvs) => {
            UnionLit(k, bx(normalize(v)), map_record_value(kvs, normalize))
        }
        Merge(ref _x, ref _y, ref _t) => unimplemented!(),
        Field(ref r, x) => match normalize(r) {
            RecordLit(kvs) => match kvs.get(x) {
                Some(r2) => normalize(r2),
                None => {
                    Field(bx(RecordLit(map_record_value(&kvs, normalize))), x)
                }
            },
            r2 => Field(bx(r2), x),
        },
        Note(_, ref e) => normalize(e),
        Embed(ref a) => Embed(a.clone()),
        _ => unimplemented!(),
    }
}

fn with_binop<'a, S, A, U, Get, Set>(
    op: BinOp,
    get: Get,
    set: Set,
    x: Expr<'a, S, A>,
    y: Expr<'a, S, A>,
) -> Expr<'a, S, A>
where
    Get: Fn(&Expr<'a, S, A>) -> Option<U>,
    Set: FnOnce(U, U) -> Expr<'a, S, A>,
{
    if let (Some(xv), Some(yv)) = (get(&x), get(&y)) {
        set(xv, yv)
    } else {
        Expr::BinOp(op, bx(x), bx(y))
    }
}