summaryrefslogtreecommitdiff
path: root/dhall/src/parser.rs
blob: 21429b026816c4bcd19fc01df32d9ef8b7afa7ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
use std::collections::BTreeMap;
use itertools::*;
use lalrpop_util;
use pest::Parser;
use pest::iterators::Pair;

use dhall_parser::{DhallParser, Rule};

use crate::grammar;
use crate::grammar_util::{BoxExpr, ParsedExpr};
use crate::lexer::{Lexer, LexicalError, Tok};
use crate::core::{bx, Expr, Builtin, Const, V};

pub fn parse_expr_lalrpop(s: &str) -> Result<BoxExpr, lalrpop_util::ParseError<usize, Tok, LexicalError>>  {
    grammar::ExprParser::new().parse(Lexer::new(s))
}

pub type ParseError = pest::error::Error<Rule>;

pub type ParseResult<T> = Result<T, ParseError>;

pub fn custom_parse_error(pair: &Pair<Rule>, msg: String) -> ParseError {
    let e = pest::error::ErrorVariant::CustomError{ message: msg };
    pest::error::Error::new_from_span(e, pair.as_span())
}


macro_rules! parse_aux {
    // Normal pattern
    (0, $inner:expr, $x:ident : $ty:ident $($rest:tt)*) => {
        let $x = concat_idents!(parse_, $ty)($inner.next().unwrap())?;
        parse_aux!(0, $inner $($rest)*);
    };
    // Normal pattern after a variable length one: declare reversed and take from the end
    ($w:expr, $inner:expr, $x:ident : $ty:ident $($rest:tt)*) => {
        parse_aux!($w, $inner $($rest)*);
        let $x = concat_idents!(parse_, $ty)($inner.next_back().unwrap())?;
    };
    // Optional pattern
    (0, $inner:expr, $x:ident? : $ty:ident $($rest:tt)*) => {
        parse_aux!(1, $inner $($rest)*);
        let $x = $inner.next().map(concat_idents!(parse_, $ty)).transpose()?;
        $inner.next().ok_or(()).expect_err("Some parsed values remain unused");
    };
    // Everything else pattern
    (0, $inner:expr, $x:ident* : $ty:ident $($rest:tt)*) => {
        parse_aux!(2, $inner $($rest)*);
        #[allow(unused_mut)]
        let mut $x = $inner.map(concat_idents!(parse_, $ty));
    };

    // Check no elements remain
    (0, $inner:expr) => {
        $inner.next().ok_or(()).expect_err("Some parsed values remain unused");
    };
    ($_:expr, $inner:expr) => {};
}

macro_rules! parse {
    ($pair:expr; ($($args:tt)*) => $body:expr) => {
        {
            #[allow(unused_mut)]
            let mut inner = $pair.into_inner();
            parse_aux!(0, inner, $($args)*);
            Ok($body)
        }
    };
}


fn parse_binop<'a, F>(pair: Pair<'a, Rule>, mut f: F) -> ParseResult<BoxExpr<'a>>
where F: FnMut(BoxExpr<'a>, BoxExpr<'a>) -> ParsedExpr<'a> {
    parse!(pair; (first: expression, rest*: expression) => {
        rest.fold_results(first, |acc, e| bx(f(acc, e)))?
    })
}

fn skip_expr(pair: Pair<Rule>) -> ParseResult<BoxExpr> {
    parse!(pair; (expr: expression) => {
        expr
    })
}

fn parse_str(pair: Pair<Rule>) -> ParseResult<&str> {
    Ok(pair.as_str().trim())
}

fn parse_natural(pair: Pair<Rule>) -> ParseResult<usize> {
    parse_str(pair.clone())?
        .parse()
        .map_err(|e: std::num::ParseIntError| custom_parse_error(&pair, format!("{}", e)))
}

fn parse_integer(pair: Pair<Rule>) -> ParseResult<isize> {
    parse_str(pair.clone())?
        .parse()
        .map_err(|e: std::num::ParseIntError| custom_parse_error(&pair, format!("{}", e)))
}

fn parse_letbinding(pair: Pair<Rule>) -> ParseResult<(&str, Option<BoxExpr>, BoxExpr)> {
    parse!(pair; (name: str, annot?: expression, expr: expression) => {
        (name, annot, expr)
    })
}

fn parse_record_entry(pair: Pair<Rule>) -> ParseResult<(&str, BoxExpr)> {
    parse!(pair; (name: str, expr: expression) => { (name, expr) })
}

fn parse_partial_record_entries(pair: Pair<Rule>) -> ParseResult<(Rule, BoxExpr, BTreeMap<&str, ParsedExpr>)> {
    let rule = pair.as_rule();
    parse!(pair; (expr: expression, entries*: record_entry) => {
        let mut map: BTreeMap<&str, ParsedExpr> = BTreeMap::new();
        for entry in entries {
            let (n, e) = entry?;
            map.insert(n, *e);
        }
        (rule, expr, map)
    })
}

// TODO: handle stack manually
fn parse_expression(pair: Pair<Rule>) -> ParseResult<BoxExpr> {
    match pair.as_rule() {
        Rule::natural_literal_raw => Ok(bx(Expr::NaturalLit(parse_natural(pair)?))),
        Rule::integer_literal_raw => Ok(bx(Expr::IntegerLit(parse_integer(pair)?))),

        Rule::identifier_raw =>
            parse!(pair; (name: str, idx?: natural) => {
                match Builtin::parse(name) {
                    Some(b) => bx(Expr::Builtin(b)),
                    None => match name {
                        "True" => bx(Expr::BoolLit(true)),
                        "False" => bx(Expr::BoolLit(false)),
                        "Type" => bx(Expr::Const(Const::Type)),
                        "Kind" => bx(Expr::Const(Const::Kind)),
                        name => bx(Expr::Var(V(name, idx.unwrap_or(0)))),
                    }
                }
            }),

        Rule::lambda_expression =>
            parse!(pair; (label: str, typ: expression, body: expression) => {
                bx(Expr::Lam(label, typ, body))
            }),

        Rule::ifthenelse_expression =>
            parse!(pair; (cond: expression, left: expression, right: expression) => {
                bx(Expr::BoolIf(cond, left, right))
            }),

        Rule::let_expression =>
            parse!(pair; (bindings*: letbinding, final_expr: expression) => {
                bindings.fold_results(final_expr, |acc, x| bx(Expr::Let(x.0, x.1, x.2, acc)))?
            }),

        Rule::forall_expression =>
            parse!(pair; (label: str, typ: expression, body: expression) => {
                bx(Expr::Pi(label, typ, body))
            }),

        Rule::annotated_expression => { parse_binop(pair, Expr::Annot) }
        Rule::import_alt_expression => { skip_expr(pair) }
        Rule::or_expression => { parse_binop(pair, Expr::BoolOr) }
        Rule::plus_expression => { parse_binop(pair, Expr::NaturalPlus) }
        Rule::text_append_expression => { parse_binop(pair, Expr::TextAppend) }
        Rule::list_append_expression => { skip_expr(pair) }
        Rule::and_expression => { parse_binop(pair, Expr::BoolAnd) }
        Rule::combine_expression => { skip_expr(pair) }
        Rule::prefer_expression => { skip_expr(pair) }
        Rule::combine_types_expression => { skip_expr(pair) }
        Rule::times_expression => { parse_binop(pair, Expr::NaturalTimes) }
        Rule::equal_expression => { parse_binop(pair, Expr::BoolEQ) }
        Rule::not_equal_expression => { parse_binop(pair, Expr::BoolNE) }
        Rule::application_expression => { parse_binop(pair, Expr::App) }

        Rule::selector_expression_raw =>
            parse!(pair; (first: expression, rest*: str) => {
                rest.fold_results(first, |acc, e| bx(Expr::Field(acc, e)))?
            }),

        Rule::empty_record_type => Ok(bx(Expr::Record(BTreeMap::new()))),
        Rule::empty_record_literal => Ok(bx(Expr::RecordLit(BTreeMap::new()))),
        Rule::non_empty_record_type_or_literal =>
            parse!(pair; (first_label: str, rest: partial_record_entries) => {
                let (rule, first_expr, mut map) = rest;
                map.insert(first_label, *first_expr);
                match rule {
                    Rule::non_empty_record_type => bx(Expr::Record(map)),
                    Rule::non_empty_record_literal => bx(Expr::RecordLit(map)),
                    _ => unreachable!()
                }
            }),


        _ => {
            // panic!();
            let rulename = format!("{:?}", pair.as_rule());
            parse!(pair; (exprs*: expression) => {
                bx(Expr::FailedParse(rulename, exprs.map_results(|x| *x).collect::<ParseResult<_>>()?))
            })
        }
    }
}

pub fn parse_expr_pest(s: &str) -> ParseResult<BoxExpr>  {
    let parsed_expr = DhallParser::parse(Rule::final_expression, s)?.next().unwrap();

    parse_expression(parsed_expr)
}


#[test]
fn test_parse() {
    use crate::core::Expr::*;
    // let expr = r#"{ x = "foo", y = 4 }.x"#;
    // let expr = r#"(1 + 2) * 3"#;
    let expr = r#"if True then 1 + 3 * 5 else 2"#;
    println!("{:?}", parse_expr_lalrpop(expr));
    match parse_expr_pest(expr) {
        Err(e) => {
            println!("{:?}", e);
            println!("{}", e);
        },
        ok => println!("{:?}", ok),
    }
    assert_eq!(parse_expr_pest(expr).unwrap(), parse_expr_lalrpop(expr).unwrap());
    // assert!(false);

    println!("test {:?}", parse_expr_lalrpop("3 + 5 * 10"));
    assert!(parse_expr_lalrpop("22").is_ok());
    assert!(parse_expr_lalrpop("(22)").is_ok());
    assert_eq!(parse_expr_lalrpop("3 + 5 * 10").ok(),
               Some(Box::new(NaturalPlus(Box::new(NaturalLit(3)),
                                Box::new(NaturalTimes(Box::new(NaturalLit(5)),
                                                      Box::new(NaturalLit(10))))))));
    // The original parser is apparently right-associative
    assert_eq!(parse_expr_lalrpop("2 * 3 * 4").ok(),
               Some(Box::new(NaturalTimes(Box::new(NaturalLit(2)),
                                 Box::new(NaturalTimes(Box::new(NaturalLit(3)),
                                                       Box::new(NaturalLit(4))))))));
    assert!(parse_expr_lalrpop("((((22))))").is_ok());
    assert!(parse_expr_lalrpop("((22)").is_err());
    println!("{:?}", parse_expr_lalrpop("\\(b : Bool) -> b == False"));
    assert!(parse_expr_lalrpop("\\(b : Bool) -> b == False").is_ok());
    println!("{:?}", parse_expr_lalrpop("foo.bar"));
    assert!(parse_expr_lalrpop("foo.bar").is_ok());
    assert!(parse_expr_lalrpop("[] : List Bool").is_ok());

    // println!("{:?}", parse_expr_lalrpop("< Left = True | Right : Natural >"));
    // println!("{:?}", parse_expr_lalrpop(r#""bl${42}ah""#));
    // assert!(parse_expr_lalrpop("< Left = True | Right : Natural >").is_ok());
}