1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
|
#![allow(non_snake_case)]
use dhall_core::*;
use dhall_generator::dhall_expr;
use std::fmt;
fn apply_builtin<S, A>(b: Builtin, args: &Vec<Expr<S, A>>) -> WhatNext<S, A>
where
S: fmt::Debug + Clone,
A: fmt::Debug + Clone,
{
use dhall_core::Builtin::*;
use dhall_core::ExprF::*;
use WhatNext::*;
let (ret, rest) = match (b, args.as_slice()) {
(OptionalSome, [x, rest..]) => (rc(NEOptionalLit(x.roll())), rest),
(OptionalNone, [t, rest..]) => (rc(EmptyOptionalLit(t.roll())), rest),
(NaturalIsZero, [NaturalLit(n), rest..]) => {
(rc(BoolLit(*n == 0)), rest)
}
(NaturalEven, [NaturalLit(n), rest..]) => {
(rc(BoolLit(*n % 2 == 0)), rest)
}
(NaturalOdd, [NaturalLit(n), rest..]) => {
(rc(BoolLit(*n % 2 != 0)), rest)
}
(NaturalToInteger, [NaturalLit(n), rest..]) => {
(rc(IntegerLit(*n as isize)), rest)
}
(NaturalShow, [NaturalLit(n), rest..]) => {
(rc(TextLit(n.to_string().into())), rest)
}
(ListLength, [_, EmptyListLit(_), rest..]) => (rc(NaturalLit(0)), rest),
(ListLength, [_, NEListLit(ys), rest..]) => {
(rc(NaturalLit(ys.len())), rest)
}
(ListHead, [_, EmptyListLit(t), rest..]) => {
(rc(EmptyOptionalLit(t.clone())), rest)
}
(ListHead, [_, NEListLit(ys), rest..]) => {
(rc(NEOptionalLit(ys.first().unwrap().clone())), rest)
}
(ListLast, [_, EmptyListLit(t), rest..]) => {
(rc(EmptyOptionalLit(t.clone())), rest)
}
(ListLast, [_, NEListLit(ys), rest..]) => {
(rc(NEOptionalLit(ys.last().unwrap().clone())), rest)
}
(ListReverse, [_, EmptyListLit(t), rest..]) => {
(rc(EmptyListLit(t.clone())), rest)
}
(ListReverse, [_, NEListLit(ys), rest..]) => {
let ys = ys.iter().rev().cloned().collect();
(rc(NEListLit(ys)), rest)
}
(ListIndexed, [_, EmptyListLit(t), rest..]) => (
dhall_expr!([] : List ({ index : Natural, value : t })),
rest,
),
(ListIndexed, [_, NEListLit(xs), rest..]) => {
let xs = xs
.iter()
.cloned()
.enumerate()
.map(|(i, e)| {
let i = rc(NaturalLit(i));
dhall_expr!({ index = i, value = e })
})
.collect();
(rc(NEListLit(xs)), rest)
}
(ListBuild, [a0, g, rest..]) => {
loop {
if let App(f2, args2) = g {
if let (Builtin(ListFold), [_, x, rest_inner..]) =
(f2.as_ref(), args2.as_slice())
{
// fold/build fusion
break (rc(App(x.clone(), rest_inner.to_vec())), rest);
}
};
let a0 = a0.roll();
let a1 = shift(1, &V("a".into(), 0), &a0);
let g = g.roll();
break (
dhall_expr!(
g
(List a0)
(λ(x : a0) -> λ(xs : List a1) -> [ x ] # xs)
([] : List a0)
),
rest,
);
}
}
(OptionalBuild, [a0, g, rest..]) => {
loop {
if let App(f2, args2) = g {
if let (Builtin(OptionalFold), [_, x, rest_inner..]) =
(f2.as_ref(), args2.as_slice())
{
// fold/build fusion
break (rc(App(x.clone(), rest_inner.to_vec())), rest);
}
};
let a0 = a0.roll();
let g = g.roll();
break (
dhall_expr!(
g
(Optional a0)
(λ(x: a0) -> Some x)
(None a0)
),
rest,
);
}
}
(ListFold, [_, EmptyListLit(_), _, _, nil, rest..]) => {
(nil.roll(), rest)
}
(ListFold, [_, NEListLit(xs), _, cons, nil, rest..]) => (
xs.iter().rev().fold(nil.roll(), |acc, x| {
let x = x.clone();
let acc = acc.clone();
let cons = cons.roll();
dhall_expr!(cons x acc)
}),
rest,
),
// // fold/build fusion
// (ListFold, [_, App(box Builtin(ListBuild), [_, x, rest..]), rest..]) => {
// normalize_ref(&App(bx(x.clone()), rest.to_vec()))
// }
(OptionalFold, [_, NEOptionalLit(x), _, just, _, rest..]) => {
let x = x.clone();
let just = just.roll();
(dhall_expr!(just x), rest)
}
(OptionalFold, [_, EmptyOptionalLit(_), _, _, nothing, rest..]) => {
(nothing.roll(), rest)
}
// // fold/build fusion
// (OptionalFold, [_, App(box Builtin(OptionalBuild), [_, x, rest..]), rest..]) => {
// normalize_ref(&App(bx(x.clone()), rest.to_vec()))
// }
(NaturalBuild, [g, rest..]) => {
loop {
if let App(f2, args2) = g {
if let (Builtin(NaturalFold), [x, rest_inner..]) =
(f2.as_ref(), args2.as_slice())
{
// fold/build fusion
break (rc(App(x.clone(), rest_inner.to_vec())), rest);
}
};
let g = g.roll();
break (
dhall_expr!(g Natural (λ(x : Natural) -> x + 1) 0),
rest,
);
}
}
(NaturalFold, [NaturalLit(0), _, _, zero, rest..]) => {
(zero.roll(), rest)
}
(NaturalFold, [NaturalLit(n), t, succ, zero, rest..]) => {
let fold = rc(Builtin(NaturalFold));
let n = rc(NaturalLit(n - 1));
let t = t.roll();
let succ = succ.roll();
let zero = zero.roll();
(dhall_expr!(succ (fold n t succ zero)), rest)
}
// (NaturalFold, Some(App(f2, args2)), _) => {
// match (f2.as_ref(), args2.as_slice()) {
// // fold/build fusion
// (Builtin(NaturalBuild), [x, rest..]) => {
// rc(App(x.clone(), rest.to_vec()))
// }
// _ => return rc(App(f, args)),
// }
// }
_ => return DoneAsIs,
};
// Put the remaining arguments back and eval again. In most cases
// ret will not be of a form that can be applied, so this won't go very deep.
// In lots of cases, there are no remaining args so this cann will just return ret.
let rest: Vec<SubExpr<S, A>> = rest.iter().map(ExprF::roll).collect();
Continue(ExprF::App(ret, rest))
}
// Small enum to help with being DRY
enum WhatNext<'a, S, A> {
// Recurse on this expression
Continue(Expr<S, A>),
ContinueSub(SubExpr<S, A>),
// The following expression is the normal form
Done(Expr<S, A>),
DoneRef(&'a Expr<S, A>),
DoneRefSub(&'a SubExpr<S, A>),
// The current expression is already in normal form
DoneAsIs,
}
pub fn normalize_ref<S, A>(expr: &Expr<S, A>) -> Expr<S, A>
where
S: fmt::Debug + Clone,
A: fmt::Debug + Clone,
{
use dhall_core::BinOp::*;
use dhall_core::ExprF::*;
// Recursively normalize all subexpressions
let expr: ExprF<Expr<S, A>, Label, S, A> =
expr.map_ref_simple(|e| normalize_ref(e.as_ref()));
use WhatNext::*;
let what_next = match &expr {
Let(f, _, r, b) => {
let vf0 = &V(f.clone(), 0);
// TODO: use a context
ContinueSub(subst_shift(vf0, &r.roll(), &b.roll()))
}
Annot(x, _) => DoneRef(x),
Note(_, e) => DoneRef(e),
App(f, args) if args.is_empty() => DoneRef(f),
App(App(f, args1), args2) => Continue(App(
f.clone(),
args1
.iter()
.cloned()
.chain(args2.iter().map(ExprF::roll))
.collect(),
)),
App(Builtin(b), args) => apply_builtin(*b, args),
App(Lam(x, _, b), args) => {
let mut iter = args.iter();
// We know args is nonempty
let a = iter.next().unwrap();
// Beta reduce
let vx0 = &V(x.clone(), 0);
let b2 = subst_shift(vx0, &a.roll(), &b);
Continue(App(b2, iter.map(ExprF::roll).collect()))
}
BoolIf(BoolLit(true), t, _) => DoneRef(t),
BoolIf(BoolLit(false), _, f) => DoneRef(f),
// TODO: interpolation
// TextLit(t) =>
BinOp(BoolAnd, BoolLit(x), BoolLit(y)) => Done(BoolLit(*x && *y)),
BinOp(BoolOr, BoolLit(x), BoolLit(y)) => Done(BoolLit(*x || *y)),
BinOp(BoolEQ, BoolLit(x), BoolLit(y)) => Done(BoolLit(x == y)),
BinOp(BoolNE, BoolLit(x), BoolLit(y)) => Done(BoolLit(x != y)),
BinOp(NaturalPlus, NaturalLit(x), NaturalLit(y)) => {
Done(NaturalLit(x + y))
}
BinOp(NaturalTimes, NaturalLit(x), NaturalLit(y)) => {
Done(NaturalLit(x * y))
}
BinOp(TextAppend, TextLit(x), TextLit(y)) => Done(TextLit(x + y)),
BinOp(ListAppend, EmptyListLit(t), EmptyListLit(_)) => {
Done(EmptyListLit(SubExpr::clone(t)))
}
BinOp(ListAppend, EmptyListLit(_), y) => DoneRef(y),
BinOp(ListAppend, x, EmptyListLit(_)) => DoneRef(x),
BinOp(ListAppend, NEListLit(xs), NEListLit(ys)) => {
let xs = xs.into_iter().cloned();
let ys = ys.into_iter().cloned();
Done(NEListLit(xs.chain(ys).collect()))
}
Merge(RecordLit(handlers), UnionLit(k, v, _), _) => {
match handlers.get(&k) {
Some(h) => Continue(App(h.clone(), vec![v.clone()])),
None => DoneAsIs,
}
}
Field(RecordLit(kvs), l) => match kvs.get(&l) {
Some(r) => DoneRefSub(r),
None => DoneAsIs,
},
Projection(_, ls) if ls.is_empty() => {
Done(RecordLit(std::collections::BTreeMap::new()))
}
Projection(RecordLit(kvs), ls) => Done(RecordLit(
ls.iter()
.filter_map(|l| kvs.get(l).map(|x| (l.clone(), x.clone())))
.collect(),
)),
_ => DoneAsIs,
};
match what_next {
Continue(e) => normalize_ref(&e),
ContinueSub(e) => normalize_ref(e.as_ref()),
Done(e) => e,
DoneRef(e) => e.clone(),
DoneRefSub(e) => e.unroll(),
DoneAsIs => expr.map_ref_simple(ExprF::roll),
}
}
/// Reduce an expression to its normal form, performing beta reduction
///
/// `normalize` does not type-check the expression. You may want to type-check
/// expressions before normalizing them since normalization can convert an
/// ill-typed expression into a well-typed expression.
///
/// However, `normalize` will not fail if the expression is ill-typed and will
/// leave ill-typed sub-expressions unevaluated.
///
pub fn normalize<S, A>(e: SubExpr<S, A>) -> SubExpr<S, A>
where
S: fmt::Debug + Clone,
A: fmt::Debug + Clone,
{
normalize_ref(e.as_ref()).roll()
}
|