summaryrefslogtreecommitdiff
path: root/dhall/src/normalize.rs
blob: 40112f155f91c73b34d2a9a06981d33bb21884bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#![allow(non_snake_case)]
use dhall_core::core::*;
use dhall_generator::dhall_expr;
use std::fmt;
use std::rc::Rc;

/// Reduce an expression to its weak head normal form, i.e. normalize
/// just enough to get the first constructor of the final expression
/// Is identical to normalize on primitive types, but not on more complex
/// types like functions and records.
/// This allows normalization to be lazy.
pub fn normalize_whnf<S, A>(e: &Expr<S, A>) -> Expr<S, A>
where
    S: Clone + fmt::Debug,
    A: Clone + fmt::Debug,
{
    use dhall_core::BinOp::*;
    use dhall_core::Builtin::*;
    use dhall_core::Expr::*;
    match e {
        Let(f, _, r, b) => {
            let vf0 = &V(f.clone(), 0);
            let r2 = shift::<_, S, _>(1, vf0, r);
            let b2 = subst::<_, S, _>(vf0, &r2, b);
            let b3 = shift::<_, S, _>(-1, vf0, &b2);
            normalize_whnf(&b3)
        }
        Annot(x, _) => normalize_whnf(x),
        Note(_, e) => normalize_whnf(e),
        App(f, args) => match (normalize_whnf(f), args.as_slice()) {
            (f, []) => f,
            (App(f, args1), args2) => normalize_whnf(&App(
                f.clone(),
                args1.iter().chain(args2.iter()).cloned().collect(),
            )),
            (Lam(ref x, _, ref b), [a, rest..]) => {
                // Beta reduce
                let vx0 = &V(x.clone(), 0);
                let a2 = shift::<S, S, A>(1, vx0, a);
                let b2 = subst::<S, S, A>(vx0, &a2, &b);
                let b3 = shift::<S, S, A>(-1, vx0, &b2);
                normalize_whnf(&App(bx(b3), rest.to_vec()))
            }
            // TODO: this is more normalization than needed
            (Builtin(b), args) => match (
                b,
                args.iter()
                    .map(|x| normalize_whnf(&*x))
                    .collect::<Vec<Expr<_, _>>>()
                    .as_slice(),
            ) {
                (OptionalSome, [a]) => OptionalLit(None, Some(bx(a.clone()))),
                (OptionalNone, [a]) => OptionalLit(Some(bx(a.clone())), None),
                (NaturalIsZero, [NaturalLit(n)]) => BoolLit(*n == 0),
                (NaturalEven, [NaturalLit(n)]) => BoolLit(*n % 2 == 0),
                (NaturalOdd, [NaturalLit(n)]) => BoolLit(*n % 2 != 0),
                (NaturalToInteger, [NaturalLit(n)]) => IntegerLit(*n as isize),
                (NaturalShow, [NaturalLit(n)]) => TextLit(n.to_string().into()),
                (ListLength, [_, ListLit(_, ys)]) => NaturalLit(ys.len()),
                (ListHead, [_, ListLit(t, ys)]) => {
                    OptionalLit(t.clone(), ys.iter().cloned().next())
                }
                (ListLast, [_, ListLit(t, ys)]) => {
                    OptionalLit(t.clone(), ys.iter().cloned().last())
                }
                (ListReverse, [_, ListLit(t, ys)]) => {
                    let xs = ys.iter().rev().cloned().collect();
                    ListLit(t.clone(), xs)
                }
                (ListBuild, [a0, g]) => {
                    // fold/build fusion
                    let g = match g {
                        App(f, args) => match (&**f, args.as_slice()) {
                            (Builtin(ListFold), [_, x, rest..]) => {
                                return normalize_whnf(&App(
                                    x.clone(),
                                    rest.to_vec(),
                                ))
                            }
                            (_, args) => App(f.clone(), args.to_vec()),
                        },
                        g => g.clone(),
                    };
                    let g = bx(g);
                    let a0 = bx(a0.clone());
                    let a1 = bx(shift(1, &V("a".into(), 0), &a0));
                    normalize_whnf(
                        &dhall_expr!(g (List a0) (λ(a : a0) -> λ(as : List a1) -> [ a ] # as) ([] : List a0)),
                    )
                }
                (OptionalBuild, [a0, g]) => {
                    // fold/build fusion
                    let g = match g {
                        App(f, args) => match (&**f, args.as_slice()) {
                            (Builtin(OptionalFold), [_, x, rest..]) => {
                                return normalize_whnf(&App(
                                    x.clone(),
                                    rest.to_vec(),
                                ))
                            }
                            (_, args) => App(f.clone(), args.to_vec()),
                        },
                        g => g.clone(),
                    };
                    let g = bx(g);
                    let a0 = bx(a0.clone());
                    normalize_whnf(
                        &dhall_expr!((g (Optional a0)) (λ(x: a0) -> [x] :  Optional a0) ([] :  Optional a0)),
                    )
                }
                (ListFold, [_, ListLit(_, xs), _, cons, nil]) => {
                    let e2: Expr<_, _> =
                        xs.iter().rev().fold((*nil).clone(), |acc, x| {
                            let x = (x).clone();
                            let acc = bx((acc).clone());
                            let cons = bx((cons).clone());
                            dhall_expr!(cons x acc)
                        });
                    normalize_whnf(&e2)
                }
                // // fold/build fusion
                // (ListFold, [_, App(box Builtin(ListBuild), [_, x, rest..]), rest..]) => {
                //     normalize_whnf(&App(bx(x.clone()), rest.to_vec()))
                // }
                (OptionalFold, [_, OptionalLit(_, Some(x)), _, just, _]) => {
                    let x = x.clone();
                    let just = bx(just.clone());
                    normalize_whnf(&dhall_expr!(just x))
                }
                (OptionalFold, [_, OptionalLit(_, None), _, _, nothing]) => {
                    (*nothing).clone()
                }
                // // fold/build fusion
                // (OptionalFold, [_, App(box Builtin(OptionalBuild), [_, x, rest..]), rest..]) => {
                //     normalize_whnf(&App(bx(x.clone()), rest.to_vec()))
                // }
                (NaturalBuild, [App(f, args)]) => {
                    match (&**f, args.as_slice()) {
                        // fold/build fusion
                        (Builtin(NaturalFold), [x, rest..]) => {
                            normalize_whnf(&App(x.clone(), rest.to_vec()))
                        }
                        (_, args) => app(
                            Builtin(NaturalBuild),
                            vec![bx(App(f.clone(), args.to_vec()))],
                        ),
                    }
                }
                (NaturalFold, [App(f, args)]) => {
                    match (&**f, args.as_slice()) {
                        // fold/build fusion
                        (Builtin(NaturalBuild), [x, rest..]) => {
                            normalize_whnf(&App(x.clone(), rest.to_vec()))
                        }
                        (_, args) => app(
                            Builtin(NaturalFold),
                            vec![bx(App(f.clone(), args.to_vec()))],
                        ),
                    }
                }
                (b, args) => {
                    App(bx(Builtin(b)), args.iter().cloned().map(bx).collect())
                }
            },
            (f, args) => App(bx(f), args.to_vec()),
        },
        BoolIf(b, t, f) => match normalize_whnf(b) {
            BoolLit(true) => normalize_whnf(t),
            BoolLit(false) => normalize_whnf(f),
            b2 => BoolIf(bx(b2), t.clone(), f.clone()),
        },
        OptionalLit(t, es) => {
            if !es.is_none() {
                OptionalLit(None, es.clone())
            } else {
                OptionalLit(t.clone(), es.clone())
            }
        }
        BinOp(o, x, y) => match (o, normalize_whnf(&x), normalize_whnf(&y)) {
            (BoolAnd, BoolLit(x), BoolLit(y)) => BoolLit(x && y),
            (BoolOr, BoolLit(x), BoolLit(y)) => BoolLit(x || y),
            (BoolEQ, BoolLit(x), BoolLit(y)) => BoolLit(x == y),
            (BoolNE, BoolLit(x), BoolLit(y)) => BoolLit(x != y),
            (NaturalPlus, NaturalLit(x), NaturalLit(y)) => NaturalLit(x + y),
            (NaturalTimes, NaturalLit(x), NaturalLit(y)) => NaturalLit(x * y),
            (TextAppend, TextLit(x), TextLit(y)) => TextLit(x + y),
            (ListAppend, ListLit(t1, xs), ListLit(t2, ys)) => {
                // Drop type annotation if the result is nonempty
                let t = if xs.is_empty() && ys.is_empty() {
                    t1.or(t2)
                } else {
                    None
                };
                let xs = xs.into_iter();
                let ys = ys.into_iter();
                ListLit(t, xs.chain(ys).collect())
            }
            (o, x, y) => BinOp(*o, bx(x), bx(y)),
        },
        Field(e, x) => match (normalize_whnf(&e), x) {
            (RecordLit(kvs), x) => match kvs.get(&x) {
                Some(r) => normalize_whnf(r),
                None => Field(bx(RecordLit(kvs)), x.clone()),
            },
            (e, x) => Field(bx(e), x.clone()),
        },
        e => e.clone(),
    }
}

/// Reduce an expression to its normal form, performing beta reduction
///
/// `normalize` does not type-check the expression.  You may want to type-check
/// expressions before normalizing them since normalization can convert an
/// ill-typed expression into a well-typed expression.
///
/// However, `normalize` will not fail if the expression is ill-typed and will
/// leave ill-typed sub-expressions unevaluated.
///
pub fn normalize<S, T, A>(e: &Expr<S, A>) -> Expr<T, A>
where
    S: Clone + fmt::Debug,
    T: Clone + fmt::Debug,
    A: Clone + fmt::Debug,
{
    normalize_whnf(e).map_shallow(
        normalize,
        |_| unreachable!(),
        |x| x.clone(),
        |x| x.clone(),
    )
}