1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
|
#![allow(non_snake_case)]
use dhall_core::core::*;
use dhall_generator::dhall_expr;
use std::fmt;
use std::rc::Rc;
fn apply_builtin<S, A>(b: Builtin, mut args: Vec<SubExpr<S, A>>) -> SubExpr<S, A>
where
S: fmt::Debug,
A: fmt::Debug,
{
use dhall_core::BinOp::*;
use dhall_core::Builtin::*;
use dhall_core::Expr::*;
let f = rc(Builtin(b));
// How many arguments a builtin needs, and which argument
// should be normalized and pattern-matched
let (len_consumption, arg_to_eval) = match b {
OptionalSome => (1, None),
OptionalNone => (1, None),
NaturalIsZero => (1, Some(0)),
NaturalEven => (1, Some(0)),
NaturalOdd => (1, Some(0)),
NaturalToInteger => (1, Some(0)),
NaturalShow => (1, Some(0)),
ListLength => (2, Some(1)),
ListHead => (2, Some(1)),
ListLast => (2, Some(1)),
ListReverse => (2, Some(1)),
ListIndexed => (2, Some(1)),
ListBuild => (2, Some(1)),
OptionalBuild => (2, Some(1)),
ListFold => (5, Some(1)),
OptionalFold => (5, Some(1)),
NaturalBuild => (1, Some(0)),
NaturalFold => (4, Some(0)),
_ => (0, None),
};
// Abort if not enough arguments present
if len_consumption > args.len() {
return rc(App(f, args));
}
// Normalize the important argument
if let Some(i) = arg_to_eval {
args[i] = Rc::clone(&normalize_whnf(&args[i]));
}
let evaled_arg = arg_to_eval.map(|i| args[i].as_ref());
let ret = match (b, evaled_arg, args.as_slice()) {
(OptionalSome, _, [x, ..]) => rc(OptionalLit(None, Some(Rc::clone(x)))),
(OptionalNone, _, [t, ..]) => rc(OptionalLit(Some(Rc::clone(t)), None)),
(NaturalIsZero, Some(NaturalLit(n)), _) => rc(BoolLit(*n == 0)),
(NaturalEven, Some(NaturalLit(n)), _) => rc(BoolLit(*n % 2 == 0)),
(NaturalOdd, Some(NaturalLit(n)), _) => rc(BoolLit(*n % 2 != 0)),
(NaturalToInteger, Some(NaturalLit(n)), _) => {
rc(IntegerLit(*n as isize))
}
(NaturalShow, Some(NaturalLit(n)), _) => {
rc(TextLit(n.to_string().into()))
}
(ListLength, Some(EmptyListLit(_)), _) => rc(NaturalLit(0)),
(ListLength, Some(NEListLit(ys)), _) => rc(NaturalLit(ys.len())),
(ListHead, Some(EmptyListLit(t)), _) => {
rc(OptionalLit(Some(t.clone()), None))
}
(ListHead, Some(NEListLit(ys)), _) => {
rc(OptionalLit(None, ys.iter().cloned().next()))
}
(ListLast, Some(EmptyListLit(t)), _) => {
rc(OptionalLit(Some(t.clone()), None))
}
(ListLast, Some(NEListLit(ys)), _) => {
rc(OptionalLit(None, ys.iter().cloned().last()))
}
(ListReverse, Some(EmptyListLit(t)), _) => {
rc(EmptyListLit(t.clone()))
}
(ListReverse, Some(NEListLit(ys)), _) => {
let ys = ys.iter().rev().cloned().collect();
rc(NEListLit(ys))
}
(ListIndexed, Some(EmptyListLit(t)), _) => {
let t = Rc::clone(t);
dhall_expr!([] : List ({ index : Natural, value : t }))
}
(ListIndexed, Some(NEListLit(xs)), _) => {
let xs = xs.iter().cloned().enumerate().map(|(i, e)| {
let i = rc(NaturalLit(i));
dhall_expr!({ index = i, value = e })
}).collect();
rc(NEListLit(xs))
}
(ListBuild, _, [a0, g, ..]) => {
loop {
if let App(f2, args2) = g.as_ref() {
if let (Builtin(ListFold), [_, x, rest..]) =
(f2.as_ref(), args2.as_slice())
{
// fold/build fusion
break rc(App(x.clone(), rest.to_vec()));
}
};
let a0 = Rc::clone(a0);
let a1 = shift(1, &V("a".into(), 0), &a0);
// TODO: use Embed to avoid reevaluating g
break dhall_expr!(g (List a0) (λ(a : a0) -> λ(as : List a1) -> [ a ] # as) ([] : List a0));
}
}
(OptionalBuild, _, [a0, g, ..]) => {
loop {
if let App(f2, args2) = g.as_ref() {
if let (Builtin(OptionalFold), [_, x, rest..]) =
(f2.as_ref(), args2.as_slice())
{
// fold/build fusion
break rc(App(x.clone(), rest.to_vec()));
}
};
let a0 = Rc::clone(a0);
// TODO: use Embed to avoid reevaluating g
break dhall_expr!((g (Optional a0)) (λ(x: a0) -> [x] : Optional a0) ([] : Optional a0));
}
}
(ListFold, Some(EmptyListLit(_)), [_, _, _, _, nil, ..]) => {
Rc::clone(nil)
}
(ListFold, Some(NEListLit(xs)), [_, _, _, cons, nil, ..]) => {
xs.iter().rev().fold(Rc::clone(nil), |acc, x| {
let x = x.clone();
let acc = acc.clone();
let cons = Rc::clone(cons);
dhall_expr!(cons x acc)
})
}
// // fold/build fusion
// (ListFold, [_, App(box Builtin(ListBuild), [_, x, rest..]), rest..]) => {
// normalize_whnf(&App(bx(x.clone()), rest.to_vec()))
// }
(
OptionalFold,
Some(OptionalLit(_, Some(x))),
[_, _, _, just, _, ..],
) => {
let x = x.clone();
let just = Rc::clone(just);
dhall_expr!(just x)
}
(
OptionalFold,
Some(OptionalLit(_, None)),
[_, _, _, _, nothing, ..],
) => Rc::clone(nothing),
// // fold/build fusion
// (OptionalFold, [_, App(box Builtin(OptionalBuild), [_, x, rest..]), rest..]) => {
// normalize_whnf(&App(bx(x.clone()), rest.to_vec()))
// }
(NaturalBuild, _, [g, ..]) => {
loop {
if let App(f2, args2) = g.as_ref() {
if let (Builtin(NaturalFold), [x, rest..]) =
(f2.as_ref(), args2.as_slice())
{
// fold/build fusion
break rc(App(x.clone(), rest.to_vec()));
}
};
// TODO: use Embed to avoid reevaluating g
break dhall_expr!(g Natural (λ(x : Natural) -> x + 1) 0)
}
}
(NaturalFold, Some(NaturalLit(0)), [_, _, _, zero]) => {
Rc::clone(zero)
}
(NaturalFold, Some(NaturalLit(n)), [_, t, succ, zero]) => {
let fold = rc(Builtin(NaturalFold));
let n = rc(NaturalLit(n-1));
let t = Rc::clone(t);
let succ = Rc::clone(succ);
let zero = Rc::clone(zero);
dhall_expr!(succ (fold n t succ zero))
}
// (NaturalFold, Some(App(f2, args2)), _) => {
// match (f2.as_ref(), args2.as_slice()) {
// // fold/build fusion
// (Builtin(NaturalBuild), [x, rest..]) => {
// rc(App(x.clone(), rest.to_vec()))
// }
// _ => return rc(App(f, args)),
// }
// }
_ => return rc(App(f, args)),
};
// Put the remaining arguments back and eval again. In most cases
// ret will not be of a form that can be applied, so this won't go very deep.
// In lots of cases, there are no remaining args so this cann will just return ret.
normalize_whnf(&rc(Expr::App(ret, args.split_off(len_consumption))))
}
/// Reduce an expression to its weak head normal form, i.e. normalize
/// just enough to get the first constructor of the final expression
/// Is identical to normalize on primitive types, but not on more complex
/// types like functions and records.
/// This allows normalization to be lazy.
pub fn normalize_whnf<S, A>(e: &SubExpr<S, A>) -> SubExpr<S, A>
where
S: fmt::Debug,
A: fmt::Debug,
{
use dhall_core::BinOp::*;
use dhall_core::Expr::*;
match e.as_ref() {
Let(f, _, r, b) => {
let vf0 = &V(f.clone(), 0);
let r2 = shift(1, vf0, r);
// TODO: use a context
let b2 = subst(vf0, &r2, b);
// TODO: add tests sensitive to shift errors before
// trying anything
let b3 = shift(-1, vf0, &b2);
normalize_whnf(&b3)
}
Annot(x, _) => normalize_whnf(x),
Note(_, e) => normalize_whnf(e),
App(f, args) => {
let f = normalize_whnf(f);
match (f.as_ref(), args.as_slice()) {
(_, []) => f,
// TODO: use Embed to avoid reevaluating f
(App(f, args1), args2) => normalize_whnf(&rc(App(
f.clone(),
args1.iter().chain(args2.iter()).cloned().collect(),
))),
(Lam(ref x, _, ref b), [a, rest..]) => {
// Beta reduce
let vx0 = &V(x.clone(), 0);
let a2 = shift(1, vx0, a);
let b2 = subst(vx0, &a2, &b);
let b3 = shift(-1, vx0, &b2);
normalize_whnf(&rc(App(b3, rest.to_vec())))
}
(Builtin(b), _) => apply_builtin(*b, args.to_vec()),
_ => rc(App(f, args.to_vec())),
}
}
BoolIf(b, t, f) => {
let b = normalize_whnf(b);
match b.as_ref() {
BoolLit(true) => normalize_whnf(t),
BoolLit(false) => normalize_whnf(f),
_ => rc(BoolIf(b, t.clone(), f.clone())),
}
}
OptionalLit(t, es) => {
if !es.is_none() {
rc(OptionalLit(None, es.clone()))
} else {
rc(OptionalLit(t.clone(), es.clone()))
}
}
// TODO: interpolation
// TextLit(t) =>
BinOp(o, x, y) => {
let x = normalize_whnf(x);
let y = normalize_whnf(y);
rc(match (o, x.as_ref(), y.as_ref()) {
(BoolAnd, BoolLit(x), BoolLit(y)) => BoolLit(*x && *y),
(BoolOr, BoolLit(x), BoolLit(y)) => BoolLit(*x || *y),
(BoolEQ, BoolLit(x), BoolLit(y)) => BoolLit(x == y),
(BoolNE, BoolLit(x), BoolLit(y)) => BoolLit(x != y),
(NaturalPlus, NaturalLit(x), NaturalLit(y)) => {
NaturalLit(x + y)
}
(NaturalTimes, NaturalLit(x), NaturalLit(y)) => {
NaturalLit(x * y)
}
(TextAppend, TextLit(x), TextLit(y)) => TextLit(x + y),
(ListAppend, EmptyListLit(t), EmptyListLit(_)) => EmptyListLit(Rc::clone(t)),
(ListAppend, EmptyListLit(_), _) => return y,
(ListAppend, _, EmptyListLit(_)) => return x,
(ListAppend, NEListLit(xs), NEListLit(ys)) => {
let xs = xs.into_iter().cloned();
let ys = ys.into_iter().cloned();
NEListLit(xs.chain(ys).collect())
}
(o, _, _) => BinOp(*o, x, y),
})
}
Field(e, x) => {
let e = normalize_whnf(e);
match (e.as_ref(), x) {
(RecordLit(kvs), x) => match kvs.get(&x) {
Some(r) => normalize_whnf(r),
None => rc(Field(e, x.clone())),
},
(_, x) => rc(Field(e, x.clone())),
}
}
_ => Rc::clone(e),
}
}
/// Reduce an expression to its normal form, performing beta reduction
///
/// `normalize` does not type-check the expression. You may want to type-check
/// expressions before normalizing them since normalization can convert an
/// ill-typed expression into a well-typed expression.
///
/// However, `normalize` will not fail if the expression is ill-typed and will
/// leave ill-typed sub-expressions unevaluated.
///
pub fn normalize<S, A>(e: SubExpr<S, A>) -> SubExpr<S, A>
where
S: fmt::Debug,
A: fmt::Debug,
{
map_subexpr_rc(&normalize_whnf(&e), |x| normalize(Rc::clone(x)))
}
|