diff options
Diffstat (limited to 'Verification/Insert.lean')
-rw-r--r-- | Verification/Insert.lean | 134 |
1 files changed, 134 insertions, 0 deletions
diff --git a/Verification/Insert.lean b/Verification/Insert.lean new file mode 100644 index 0000000..260eaa1 --- /dev/null +++ b/Verification/Insert.lean @@ -0,0 +1,134 @@ +import Verification.Tree +import Verification.BinarySearchTree +import Verification.Specifications + +namespace Implementation + +open Primitives +open avl_verification +open Tree (AVLTree AVLTree.set) +open Specifications (OrdSpecLinearOrderEq infallible ltOfRustOrder gtOfRustOrder) + +variable (T: Type) (H: avl_verification.Ord T) [LinearOrder T] (Ospec: OrdSpecLinearOrderEq H) + +@[pspec] +theorem AVLTreeSet.insert_loop_spec_local (p: T -> Prop) + (Hcmp_spec: ∀ a b, ∃ o, H.cmp a b = Result.ok o) + (a: T) (t: Option (AVLNode T)): + ∃ added t_new, AVLTreeSet.insert_loop T H a t = Result.ok ⟨ added, t_new ⟩ +-- ∧ AVLTree.set t'.2 = insert a (AVLTree.set t) + ∧ (BST.ForallNode p t -> p a -> BST.ForallNode p t_new) + := by match t with + | none => + simp [AVLTreeSet.insert_loop, AVLTree.set, setOf] + intros _ Hpa + constructor; all_goals try simp [BST.ForallNode.none] + exact Hpa + | some (AVLNode.mk b left right) => + rw [AVLTreeSet.insert_loop] + simp only [] + progress keep Hordering as ⟨ ordering ⟩ + cases ordering + all_goals simp only [] + { + progress keep Htree as ⟨ added₁, right₁, Hnode ⟩ + refine' ⟨ added₁, ⟨ some (AVLNode.mk b left right₁), _ ⟩ ⟩ + simp only [true_and] + intros Hptree Hpa + constructor + exact Hptree.left + exact Hptree.label + exact Hnode Hptree.right Hpa + } + { + simp; tauto + } + { + -- TODO: investigate wlog. + -- Symmetric case of left. + progress keep Htree as ⟨ added₁, left₁, Hnode ⟩ + refine' ⟨ added₁, ⟨ some (AVLNode.mk b left₁ right), _ ⟩ ⟩ + simp only [true_and] + intros Hptree Hpa + constructor + exact Hnode Hptree.left Hpa + exact Hptree.label + exact Hptree.right + } + +@[pspec] +lemma AVLTreeSet.insert_loop_spec_global + (a: T) (t: Option (AVLNode T)) + : + BST.Invariant t -> ∃ added t_new, AVLTreeSet.insert_loop T H a t = Result.ok ⟨ added, t_new ⟩ + ∧ BST.Invariant t_new ∧ AVLTree.set t_new = {a} ∪ AVLTree.set t := by + intro Hbst + match t with + | none => simp [AVLTreeSet.insert_loop, AVLTree.set, setOf] + | some (AVLNode.mk b left right) => + rw [AVLTreeSet.insert_loop] + simp only [] + have : ∀ a b, ∃ o, H.cmp a b = .ok o := infallible H + progress keep Hordering as ⟨ ordering ⟩ + cases ordering + all_goals simp only [] + { + have ⟨ added₂, right₂, ⟨ H_result, ⟨ H_bst, H_set ⟩ ⟩ ⟩ := AVLTreeSet.insert_loop_spec_global a right (BST.right Hbst) + progress keep Htree with AVLTreeSet.insert_loop_spec_local as ⟨ added₁, right₁, Hnode ⟩ + exact (fun x => b < x) + rewrite [Htree] at H_result; simp at H_result + refine' ⟨ added₁, ⟨ some (AVLNode.mk b left right₁), _ ⟩ ⟩ + simp only [true_and] + split_conjs + cases' Hbst with _ _ _ H_forall_left H_forall_right H_bst_left H_bst_right + constructor + exact H_forall_left + apply Hnode; exact H_forall_right + exact (ltOfRustOrder H b a Hordering) + exact H_bst_left + convert H_bst + exact H_result.2 + simp [AVLTree.set_some] + rewrite [H_result.2, H_set] + simp + } + { + simp; split_conjs + . tauto + . simp [Ospec.equivalence _ _ Hordering] + } + { + have ⟨ added₂, left₂, ⟨ H_result, ⟨ H_bst, H_set ⟩ ⟩ ⟩ := AVLTreeSet.insert_loop_spec_global a left (BST.left Hbst) + progress keep Htree with AVLTreeSet.insert_loop_spec_local as ⟨ added₁, left₁, Hnode ⟩ + exact (fun x => x < b) + rewrite [Htree] at H_result; simp at H_result + refine' ⟨ added₁, ⟨ some (AVLNode.mk b left₁ right), _ ⟩ ⟩ + simp only [true_and] + split_conjs + cases' Hbst with _ _ _ H_forall_left H_forall_right H_bst_left H_bst_right + constructor + apply Hnode; exact H_forall_left + exact (gtOfRustOrder H b a Hordering) + exact H_forall_right + convert H_bst + exact H_result.2 + exact H_bst_right + simp [AVLTree.set_some] + rewrite [H_result.2, H_set] + simp [Set.singleton_union, Set.insert_comm, Set.insert_union] + } + +@[pspec] +def AVLTreeSet.insert_spec + (a: T) (t: AVLTreeSet T): + BST.Invariant t.root -> (∃ t' added,t.insert _ H a = Result.ok (added, t') + -- it's still a binary search tree. + ∧ BST.Invariant t'.root + ∧ AVLTree.set t'.root = {a} ∪ AVLTree.set t.root) + := by + rw [AVLTreeSet.insert]; intro Hbst + progress keep h as ⟨ t', Hset ⟩; + simp; assumption + +end Implementation + |