diff options
Diffstat (limited to '')
-rw-r--r-- | Main.lean | 87 |
1 files changed, 62 insertions, 25 deletions
@@ -33,59 +33,96 @@ def AVL.height (tree: AVLTree T): Nat := match tree with end -def AVLTree.mem (tree: AVLTree T) (x: T): Prop := +@[reducible] +def AVLTree.mem (tree: AVLTree T) (x: T) := match tree with - | none => false - | some (AVLNode.mk y left right) => x = y ∨ AVLTree.mem left x ∨ AVLTree.mem right y + | none => False + | some (AVLNode.mk y left right) => x = y ∨ AVLTree.mem left x ∨ AVLTree.mem right x + +@[simp] +def AVLTree.mem_none: AVLTree.mem none = ({}: Set T) := rfl + +-- TODO: why the explicit type annotation is required here? +-- TODO(reinforcement): ∪ is actually disjoint. +@[simp] +def AVLTree.mem_some {x: T} {left right: AVLTree T}: AVLTree.mem (some (AVLNode.mk x left right)) = (({x}: Set T) ∪ AVLTree.mem left ∪ AVLTree.mem right) := by + ext y + rw [AVLTree.mem] + simp [Set.insert_union] + simp [Set.insert_def, Set.setOf_set, Set.mem_def, Set.union_def] + def AVLTree.setOf: AVLTree T -> Set T := AVLTree.mem +def AVLTree.val (t: AVLTree T): Option T := match t with +| none => none +| some (AVLNode.mk x _ _) => some x +def AVLTree.left (t: AVLTree T): AVLTree T := match t with +| none => none +| some (AVLNode.mk _ left _) => left +def AVLTree.right (t: AVLTree T): AVLTree T := match t with +| none => none +| some (AVLNode.mk _ _ right) => right + +def AVLTree.mem_eq_setOf (t: AVLTree T): AVLTree.mem t = t.setOf := rfl + +-- TODO: {t.val} = {} if t.val is none else {t.val.get!} otherwise. +-- @[simp] +-- def AVLTree.setOf_eq_union (t: AVLTree T): t.setOf = {t.val} ∪ t.left.setOf ∪ t.right.setOf := sorry + +-- Note: we would like to have a theorem that says something like +-- t.setOf = {t.val} ∪ t.left.setOf ∪ t.right.setOf +-- but it's not doable because Aeneas does not generate a `structure` but an inductive type with one constructor. #check AVL.nil #check U32.ofInt 0 #check 0#u32 -- TODO: créer une instance OfNat pour les Uxyz. -- TODO: générer {} adéquatement... ? - -#check (AVL.nil.insert _ _ 0#u32) - - -#check Primitives.bind (AVL.nil.insert _ _ 0#u32) (fun x => Result.ret (x.1, AVLTree.setOf x.2.root)) -#check Primitives.bind (AVL.nil.insert _ _ 0#u32) (fun x => Result.ret (x.1, AVLTree.setOf x.2.root)) -#check Primitives.bind (AVL.nil.insert _ _ 0#u32) (fun (added, tree) => Result.ret (added, AVLTree.setOf tree.root)) -#check Primitives.bind (AVL.nil.insert _ _ 0#u32) (fun x => Result.ret (x.1, AVLTree.setOf x.2.root)) -#check Primitives.bind (AVL.nil.insert _ _ 0#u32) (fun (added, tree) => Result.ret (added, AVLTree.setOf tree.root)) -#check Primitives.bind (AVL.nil.insert _ _ 0#u32) (fun x => Result.ret (x.1, AVLTree.setOf x.2.root)) - -def AVLTreeSet.setOfInsert {H: avl_verification.Ord T} (a: T) (t: AVLTreeSet T) := Primitives.bind (t.insert _ H a) (fun (_, tree) => Result.ret (AVLTree.setOf tree.root)) - -- TODO: derive from Ord an Lean Order instance. -- TODO: oh no, H.cmp returns a Result! @[pspec] -def AVLTreeSet.insert_loop_spec {H: avl_verification.Ord T} +theorem AVLTreeSet.insert_loop_spec {H: avl_verification.Ord T} (a: T) (t: Option (AVLNode T)) + (Hcmp_eq: ∀ a b, H.cmp a b = Result.ret Ordering.Equal -> a = b) (Hcmp_spec: ∀ a b, ∃ o, H.cmp a b = Result.ret o): - ∃ t', AVLTreeSet.insert_loop T H a t = Result.ret t' := by - match t with - | none => simp [AVLTreeSet.insert_loop] + ∃ t', AVLTreeSet.insert_loop T H a t = Result.ret t' + ∧ AVLTree.setOf t'.2 = insert a (AVLTree.setOf t) := by match t with + | none => + simp [AVLTreeSet.insert_loop, AVLTree.setOf] | some (AVLNode.mk b left right) => rw [AVLTreeSet.insert_loop] simp only [] - progress as ⟨ ordering ⟩ + progress keep Hordering as ⟨ ordering ⟩ cases ordering all_goals { + -- TODO: oof. + -- We are trying to tackle all goals at the same time. + -- Refactor this to make it only one simp ideally without even `try`. simp only [] - try progress - simp + try progress keep H as ⟨ t'', Hset ⟩ + simp [AVLTree.setOf] + try simp [AVLTree.setOf] at Hset + try simp [Hset] + try rw [Set.insert_comm, Set.insert_union] + try simp [Hcmp_eq _ _ Hordering] } @[pspec] def AVLTreeSet.insert_spec {H: avl_verification.Ord T} + -- TODO: this can be generalized into `H.cmp` must be an equivalence relation. + -- and insert works no longer on Sets but on set quotiented by this equivalence relation. + (Hcmp_eq: ∀ a b, H.cmp a b = Result.ret Ordering.Equal -> a = b) (Hcmp_spec: ∀ a b, ∃ o, H.cmp a b = Result.ret o) (a: T) (t: AVLTreeSet T): - ∃ t', t.insert _ H x = Result.ret t' ∧ AVLTree.setOf t'.2.root = insert a (AVLTree.setOf t.root) := by + ∃ t', t.insert _ H a = Result.ret t' + -- set of values *POST* insertion is {a} \cup set of values of the *PRE* tree. + ∧ AVLTree.setOf t'.2.root = insert a (AVLTree.setOf t.root) + -- TODO(reinforcement): (t'.1 is false <=> a \in AVLTree.setOf t.root) + := by rw [AVLTreeSet.insert] - progress; simp + progress keep h as ⟨ t', Hset ⟩; simp + rw [Hset] end Avl |