diff options
Diffstat (limited to '')
-rw-r--r-- | AvlVerification/Insert.lean | 87 |
1 files changed, 87 insertions, 0 deletions
diff --git a/AvlVerification/Insert.lean b/AvlVerification/Insert.lean new file mode 100644 index 0000000..870e9c2 --- /dev/null +++ b/AvlVerification/Insert.lean @@ -0,0 +1,87 @@ +import AvlVerification.Tree +import AvlVerification.BinarySearchTree +import AvlVerification.Specifications + +namespace Implementation + +open Primitives +open avl_verification +open Tree (AVLTree) + +variable {T: Type} + +@[pspec] +theorem AVLTreeSet.insert_loop_spec {H: avl_verification.Ord T} + (a: T) (t: Option (AVLNode T)) + [LT T] + (Hbs_search: BST.BST t) + (Hcmp_spec: ∀ a b, ∃ o, H.cmp a b = Result.ret o): + ∃ added t_new, AVLTreeSet.insert_loop T H a t = Result.ret ⟨ added, t_new ⟩ +-- ∧ AVLTree.set t'.2 = insert a (AVLTree.set t) + ∧ BST.BST t_new + := by match t with + | none => + simp [AVLTreeSet.insert_loop, AVLTree.set, setOf, BST.BST] + | some (AVLNode.mk b left right) => + rw [AVLTreeSet.insert_loop] + simp only [] + progress keep Hordering as ⟨ ordering ⟩ + cases ordering + all_goals simp only [] + have Hbs_search_right: BST.BST right := BST.right Hbs_search + have Hbs_search_left: BST.BST left := BST.left Hbs_search + { + progress keep Htree as ⟨ added₁, right₁, Hbst ⟩ + refine' ⟨ added₁, ⟨ some (AVLNode.mk b left right₁), _ ⟩ ⟩ + simp only [true_and] + refine' (BST.BST.some b left right₁ _ _ Hbs_search_left Hbst) + cases' Hbs_search; assumption + induction right with + | none => + simp [AVLTreeSet.insert_loop] at Htree + rw [← Htree.2] + refine' (BST.ForallNode.some _ _ _ BST.ForallNode.none _ BST.ForallNode.none) + sorry + | some node => + -- clef: ∀ x ∈ node.right, b < x + -- de plus: b < a + -- or, right₁ = insert a node.right moralement + -- donc, il suffit de prouver que: ∀ x ∈ insert a node.right, b < x <-> b < a /\ ∀ x ∈ node.right, b < x + sorry + } + { + simp [Hbs_search] + } + { + -- Symmetric case of left. + sorry + } + +@[pspec] +def AVLTreeSet.insert_spec + {H: avl_verification.Ord T} + -- TODO: this can be generalized into `H.cmp` must be an equivalence relation. + -- and insert works no longer on Sets but on set quotiented by this equivalence relation. + (Hcmp_eq: ∀ a b, H.cmp a b = Result.ret Ordering.Equal -> a = b) + (Hcmp_spec: ∀ a b, ∃ o, H.cmp a b = Result.ret o) + (Hbs_search: @BSTree.searchInvariant _ H t) + (a: T) (t: AVLTreeSet T): + ∃ t', t.insert _ H a = Result.ret t' + -- set of values *POST* insertion is {a} \cup set of values of the *PRE* tree. + ∧ AVLTree.setOf t'.2.root = insert a (AVLTree.setOf t.root) + -- it's still a binary search tree. + ∧ @BSTree.searchInvariant _ H t'.2.root + -- TODO(reinforcement): (t'.1 is false <=> a \in AVLTree.setOf t.root) + := by + rw [AVLTreeSet.insert] + progress keep h as ⟨ t', Hset ⟩; simp + rw [Hset] + sorry + + +-- insert is infaillible, right? +-- instance [LT T] (o: avl_verification.Ord T): Insert T (AVLTreeSet T) where +-- insert x tree := (AVLTreeSet.insert T o tree x).map (fun (added, tree) => tree) + +end Implementation + |