1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
|
import Hashmap.Funs
open Primitives
open Result
namespace List
-- TODO: we don't want to use the original List.lookup because it uses BEq
-- TODO: rewrite rule: match x == y with ... -> if x = y then ... else ... ? (actually doesn't work because of sugar)
-- TODO: move?
@[simp]
def lookup' {α : Type} (ls: List (Usize × α)) (key: Usize) : Option α :=
match ls with
| [] => none
| (k, x) :: tl => if k = key then some x else lookup' tl key
end List
namespace hashmap
namespace AList
def v {α : Type} (ls: AList α) : List (Usize × α) :=
match ls with
| Nil => []
| Cons k x tl => (k, x) :: v tl
@[simp] theorem v_nil (α : Type) : (Nil : AList α).v = [] := by rfl
@[simp] theorem v_cons {α : Type} k x (tl: AList α) : (Cons k x tl).v = (k, x) :: v tl := by rfl
@[simp]
abbrev lookup {α : Type} (ls: AList α) (key: Usize) : Option α :=
ls.v.lookup' key
@[simp]
abbrev len {α : Type} (ls : AList α) : Int := ls.v.len
end AList
namespace HashMap
namespace List
end List
-- TODO: move
@[simp] theorem neq_imp_nbeq [BEq α] [LawfulBEq α] (x y : α) (heq : ¬ x = y) : ¬ x == y := by simp [*]
@[simp] theorem neq_imp_nbeq_rev [BEq α] [LawfulBEq α] (x y : α) (heq : ¬ x = y) : ¬ y == x := by simp [*]
-- TODO: move
-- TODO: this doesn't work because of sugar
theorem match_lawful_beq [BEq α] [LawfulBEq α] [DecidableEq α] (x y : α) :
(x == y) = (if x = y then true else false) := by
split <;> simp_all
def distinct_keys (ls : List (Usize × α)) := ls.pairwise_rel (λ x y => x.fst ≠ y.fst)
def hash_mod_key (k : Usize) (l : Int) : Int :=
match hash_key k with
| .ok k => k.val % l
| _ => 0
@[simp]
theorem hash_mod_key_eq : hash_mod_key k l = k.val % l := by
simp [hash_mod_key, hash_key]
def slot_s_inv_hash (l i : Int) (ls : List (Usize × α)) : Prop :=
ls.allP (λ (k, _) => hash_mod_key k l = i)
@[simp]
def slot_s_inv (l i : Int) (ls : List (Usize × α)) : Prop :=
distinct_keys ls ∧
slot_s_inv_hash l i ls
def slot_t_inv (l i : Int) (s : AList α) : Prop := slot_s_inv l i s.v
-- Interpret the hashmap as a list of lists
def v (hm : HashMap α) : List (List (Usize × α)) :=
hm.slots.val.map AList.v
-- Interpret the hashmap as an associative list
def al_v (hm : HashMap α) : List (Usize × α) :=
hm.v.flatten
-- TODO: automatic derivation
instance : Inhabited (AList α) where
default := .Nil
@[simp]
def slots_s_inv (s : List (AList α)) : Prop :=
∀ (i : Int), 0 ≤ i → i < s.len → slot_t_inv s.len i (s.index i)
def slots_t_inv (s : alloc.vec.Vec (AList α)) : Prop :=
slots_s_inv s.v
@[simp]
def base_inv (hm : HashMap α) : Prop :=
-- [num_entries] correctly tracks the number of entries
hm.num_entries.val = hm.al_v.len ∧
-- Slots invariant
slots_t_inv hm.slots ∧
-- The capacity must be > 0 (otherwise we can't resize)
0 < hm.slots.length
-- TODO: load computation
def inv (hm : HashMap α) : Prop :=
-- Base invariant
base_inv hm
-- TODO: either the hashmap is not overloaded, or we can't resize it
-- This rewriting lemma is problematic below
attribute [-simp] Bool.exists_bool
-- The proof below is a bit expensive, so we need to increase the maximum number
-- of heart beats
set_option maxHeartbeats 1000000
theorem insert_in_list_spec_aux {α : Type} (l : Int) (key: Usize) (value: α) (l0: AList α)
(hinv : slot_s_inv_hash l (hash_mod_key key l) l0.v)
(hdk : distinct_keys l0.v) :
∃ b l1,
insert_in_list α key value l0 = ok (b, l1) ∧
-- The boolean is true ↔ we inserted a new binding
(b ↔ (l0.lookup key = none)) ∧
-- We update the binding
l1.lookup key = value ∧
(∀ k, k ≠ key → l1.lookup k = l0.lookup k) ∧
-- We preserve part of the key invariant
slot_s_inv_hash l (hash_mod_key key l) l1.v ∧
-- Reasoning about the length
(match l0.lookup key with
| none => l1.len = l0.len + 1
| some _ => l1.len = l0.len) ∧
-- The keys are distinct
distinct_keys l1.v ∧
-- We need this auxiliary property to prove that the keys distinct properties is preserved
(∀ k, k ≠ key → l0.v.allP (λ (k1, _) => k ≠ k1) → l1.v.allP (λ (k1, _) => k ≠ k1))
:= by
cases l0 with
| Nil =>
exists true -- TODO: why do we need to do this?
simp [insert_in_list]
rw [insert_in_list_loop]
simp (config := {contextual := true})
[AList.v, slot_s_inv_hash, distinct_keys, List.pairwise_rel]
| Cons k v tl0 =>
if h: k = key then
rw [insert_in_list]
rw [insert_in_list_loop]
simp [h]
exists false; simp -- TODO: why do we need to do this?
split_conjs
. intros; simp [*]
. simp [AList.v, slot_s_inv_hash] at *
simp [*]
. simp [*, distinct_keys] at *
apply hdk
. tauto
else
rw [insert_in_list]
rw [insert_in_list_loop]
simp [h]
have : slot_s_inv_hash l (hash_mod_key key l) (AList.v tl0) := by
simp_all [AList.v, slot_s_inv_hash]
have : distinct_keys (AList.v tl0) := by
simp [distinct_keys] at hdk
simp [hdk, distinct_keys]
progress as ⟨ b, tl1 .. ⟩
have : slot_s_inv_hash l (hash_mod_key key l) (AList.v (AList.Cons k v tl1)) := by
simp [AList.v, slot_s_inv_hash] at *
simp [*]
have : distinct_keys ((k, v) :: AList.v tl1) := by
simp [distinct_keys] at *
simp [*]
-- TODO: canonize addition by default?
exists b
simp_all [Int.add_assoc, Int.add_comm, Int.add_left_comm]
@[pspec]
theorem insert_in_list_spec {α : Type} (l : Int) (key: Usize) (value: α) (l0: AList α)
(hinv : slot_s_inv_hash l (hash_mod_key key l) l0.v)
(hdk : distinct_keys l0.v) :
∃ b l1,
insert_in_list α key value l0 = ok (b, l1) ∧
(b ↔ (l0.lookup key = none)) ∧
-- We update the binding
l1.lookup key = value ∧
(∀ k, k ≠ key → l1.lookup k = l0.lookup k) ∧
-- We preserve part of the key invariant
slot_s_inv_hash l (hash_mod_key key l) l1.v ∧
-- Reasoning about the length
(match l0.lookup key with
| none => l1.len = l0.len + 1
| some _ => l1.len = l0.len) ∧
-- The keys are distinct
distinct_keys l1.v
:= by
progress with insert_in_list_spec_aux as ⟨ b, l1 .. ⟩
exists b
exists l1
@[simp]
def slots_t_lookup (s : List (AList α)) (k : Usize) : Option α :=
let i := hash_mod_key k s.len
let slot := s.index i
slot.lookup k
def lookup (hm : HashMap α) (k : Usize) : Option α :=
slots_t_lookup hm.slots.val k
@[simp]
abbrev len_s (hm : HashMap α) : Int := hm.al_v.len
-- Remark: α and β must live in the same universe, otherwise the
-- bind doesn't work
theorem if_update_eq
{α β : Type u} (b : Bool) (y : α) (e : Result α) (f : α → Result β) :
(if b then Bind.bind e f else f y) = Bind.bind (if b then e else pure y) f
:= by
split <;> simp [Pure.pure]
-- Small helper
-- TODO: move, and introduce a better solution with nice syntax
def mk_opaque {α : Sort u} (x : α) : { y : α // y = x} :=
⟨ x, by simp ⟩
--set_option profiler true
--set_option profiler.threshold 10
--set_option trace.profiler true
-- For pretty printing (useful when copy-pasting goals)
set_option pp.coercions false -- do not print coercions with ↑ (this doesn't parse)
-- The proof below is a bit expensive, so we need to increase the maximum number
-- of heart beats
set_option maxHeartbeats 2000000
theorem insert_no_resize_spec {α : Type} (hm : HashMap α) (key : Usize) (value : α)
(hinv : hm.inv) (hnsat : hm.lookup key = none → hm.len_s < Usize.max) :
∃ nhm, hm.insert_no_resize α key value = ok nhm ∧
-- We preserve the invariant
nhm.inv ∧
-- We updated the binding for key
nhm.lookup key = some value ∧
-- We left the other bindings unchanged
(∀ k, ¬ k = key → nhm.lookup k = hm.lookup k) ∧
-- Reasoning about the length
(match hm.lookup key with
| none => nhm.len_s = hm.len_s + 1
| some _ => nhm.len_s = hm.len_s) := by
rw [insert_no_resize]
-- Simplify. Note that this also simplifies some function calls, like array index
simp [hash_key, bind_tc_ok]
have _ : (alloc.vec.Vec.len (AList α) hm.slots).val ≠ 0 := by
intro
simp_all [inv]
progress as ⟨ hash_mod, hhm ⟩
have _ : 0 ≤ hash_mod.val := by scalar_tac
have _ : hash_mod.val < alloc.vec.Vec.length hm.slots := by
have : 0 < hm.slots.val.len := by
simp [inv] at hinv
simp [hinv]
-- TODO: we want to automate that
simp [*, Int.emod_lt_of_pos]
progress as ⟨ l, index_mut_back, h_leq, h_index_mut_back ⟩
simp [h_index_mut_back] at *; clear h_index_mut_back index_mut_back
have h_slot :
slot_s_inv_hash hm.slots.length (hash_mod_key key hm.slots.length) l.v := by
simp [inv] at hinv
have h := (hinv.right.left hash_mod.val (by assumption) (by assumption)).right
simp [slot_t_inv, hhm] at h
simp [h, hhm, h_leq]
have hd : distinct_keys l.v := by
simp [inv, slots_t_inv, slot_t_inv] at hinv
have h := hinv.right.left hash_mod.val (by assumption) (by assumption)
simp [h, h_leq]
progress as ⟨ inserted, l0, _, _, _, _, hlen .. ⟩
rw [if_update_eq] -- TODO: necessary because we don't have a join
-- TODO: progress to ...
have hipost :
∃ i0, (if inserted = true then hm.num_entries + Usize.ofInt 1 else pure hm.num_entries) = ok i0 ∧
i0.val = if inserted then hm.num_entries.val + 1 else hm.num_entries.val
:= by
if inserted then
simp [*]
have hbounds : hm.num_entries.val + (Usize.ofInt 1).val ≤ Usize.max := by
simp [lookup] at hnsat
simp_all
simp [inv] at hinv
int_tac
progress as ⟨ z, hp ⟩
simp [hp]
else
simp [*, Pure.pure]
progress as ⟨ i0 ⟩
-- TODO: hide the variables and only keep the props
-- TODO: allow providing terms to progress to instantiate the meta variables
-- which are not propositions
progress keep hv as ⟨ v, h_veq ⟩
-- TODO: update progress to automate that
-- TODO: later I don't want to inline nhm - we need to control simp: deactivate
-- zeta reduction? For now I have to do this peculiar manipulation
have ⟨ nhm, nhm_eq ⟩ := @mk_opaque (HashMap α) { num_entries := i0, max_load_factor := hm.max_load_factor, max_load := hm.max_load, slots := v }
exists nhm
have hupdt : lookup nhm key = some value := by
simp [lookup, List.lookup] at *
simp_all
have hlkp : ∀ k, ¬ k = key → nhm.lookup k = hm.lookup k := by
simp [lookup, List.lookup] at *
intro k hk
-- We have to make a case disjunction: either the hashes are different,
-- in which case we don't even lookup the same slots, or the hashes
-- are the same, in which case we have to reason about what happens
-- in one slot
let k_hash_mod := k.val % v.val.len
have : 0 < hm.slots.val.len := by simp_all [inv]
have hvpos : 0 < v.val.len := by simp_all
have hvnz: v.val.len ≠ 0 := by
simp_all
have _ : 0 ≤ k_hash_mod := by
-- TODO: we want to automate this
simp only [k_hash_mod]
apply Int.emod_nonneg k.val hvnz
have _ : k_hash_mod < alloc.vec.Vec.length hm.slots := by
-- TODO: we want to automate this
simp only [k_hash_mod]
have h := Int.emod_lt_of_pos k.val hvpos
simp_all only [ok.injEq, exists_eq_left', List.len_update, gt_iff_lt,
List.index_update_eq, ne_eq, not_false_eq_true, neq_imp]
if h_hm : k_hash_mod = hash_mod.val then
simp_all only [k_hash_mod, List.len_update, gt_iff_lt, List.index_update_eq,
ne_eq, not_false_eq_true, neq_imp, alloc.vec.Vec.length]
else
simp_all only [k_hash_mod, List.len_update, gt_iff_lt, List.index_update_eq,
ne_eq, not_false_eq_true, neq_imp, ge_iff_le,
alloc.vec.Vec.length, List.index_update_ne]
have _ :
match hm.lookup key with
| none => nhm.len_s = hm.len_s + 1
| some _ => nhm.len_s = hm.len_s := by
simp only [lookup, List.lookup, len_s, al_v, HashMap.v, slots_t_lookup] at *
-- We have to do a case disjunction
simp_all
simp [List.update_map_eq]
-- TODO: dependent rewrites
have _ : key.val % hm.slots.val.len < (List.map AList.v hm.slots.val).len := by
simp [*]
simp [List.len_flatten_update_eq, *]
split <;>
rename_i heq <;>
simp [heq] at hlen <;>
-- TODO: canonize addition by default? We need a tactic to simplify arithmetic equalities
-- with addition and substractions ((ℤ, +) is a group or something - there should exist a tactic
-- somewhere in mathlib?)
(try simp [Int.add_assoc, Int.add_comm, Int.add_left_comm]) <;>
int_tac
have hinv : inv nhm := by
simp [inv] at *
split_conjs
. match h: lookup hm key with
| none =>
simp [h, lookup] at *
simp_all
| some _ =>
simp_all [lookup]
. simp [slots_t_inv, slot_t_inv] at *
intro i hipos _
have _ := hinv.right.left i hipos (by simp_all)
simp [hhm, h_veq, nhm_eq] at * -- TODO: annoying, we do that because simp_all fails below
-- We need a case disjunction
if h_ieq : i = key.val % List.len hm.slots.val then
-- TODO: simp_all fails: "(deterministic) timeout at 'whnf'"
-- Also, it is annoying to do this kind
-- of rewritings by hand. We could have a different simp
-- which safely substitutes variables when we have an
-- equality `x = ...` and `x` doesn't appear in the rhs
simp [h_ieq] at *
simp [*]
else
simp [*]
. simp [hinv, h_veq, nhm_eq]
simp_all
end HashMap
end hashmap
|