1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
import Hashmap.Funs
open Primitives
open Result
namespace List
-- TODO: we don't want to use the original List.lookup because it uses BEq
-- TODO: rewrite rule: match x == y with ... -> if x = y then ... else ... ? (actually doesn't work because of sugar)
-- TODO: move?
@[simp]
def lookup' {α : Type} (ls: _root_.List (Usize × α)) (key: Usize) : Option α :=
match ls with
| [] => none
| (k, x) :: tl => if k = key then some x else lookup' tl key
end List
namespace hashmap
namespace List
def v {α : Type} (ls: List α) : _root_.List (Usize × α) :=
match ls with
| Nil => []
| Cons k x tl => (k, x) :: v tl
@[simp] theorem v_nil (α : Type) : (Nil : List α).v = [] := by rfl
@[simp] theorem v_cons {α : Type} k x (tl: List α) : (Cons k x tl).v = (k, x) :: v tl := by rfl
@[simp]
abbrev lookup {α : Type} (ls: List α) (key: Usize) : Option α :=
ls.v.lookup' key
@[simp]
abbrev len {α : Type} (ls : List α) : Int := ls.v.len
end List
namespace HashMap
abbrev Core.List := _root_.List
namespace List
end List
-- TODO: move
@[simp] theorem neq_imp_nbeq [BEq α] [LawfulBEq α] (x y : α) (heq : ¬ x = y) : ¬ x == y := by simp [*]
@[simp] theorem neq_imp_nbeq_rev [BEq α] [LawfulBEq α] (x y : α) (heq : ¬ x = y) : ¬ y == x := by simp [*]
-- TODO: move
-- TODO: this doesn't work because of sugar
theorem match_lawful_beq [BEq α] [LawfulBEq α] [DecidableEq α] (x y : α) :
(x == y) = (if x = y then true else false) := by
split <;> simp_all
theorem insert_in_list_spec0 {α : Type} (key: Usize) (value: α) (ls: List α) :
∃ b,
insert_in_list α key value ls = ret b ∧
(b ↔ ls.lookup key = none)
:= match ls with
| .Nil => by simp [insert_in_list, insert_in_list_loop]
| .Cons k v tl =>
if h: k = key then -- TODO: The order of k/key matters
by
simp [insert_in_list]
rw [insert_in_list_loop]
simp [h]
else
have ⟨ b, hi ⟩ := insert_in_list_spec0 key value tl
by
exists b
simp [insert_in_list]
rw [insert_in_list_loop] -- TODO: Using simp leads to infinite recursion
simp only [insert_in_list] at hi
simp [*]
-- Variation: use progress
theorem insert_in_list_spec1 {α : Type} (key: Usize) (value: α) (ls: List α) :
∃ b,
insert_in_list α key value ls = ret b ∧
(b ↔ ls.lookup key = none)
:= match ls with
| .Nil => by simp [insert_in_list, insert_in_list_loop]
| .Cons k v tl =>
if h: k = key then -- TODO: The order of k/key matters
by
simp [insert_in_list]
rw [insert_in_list_loop]
simp [h]
else
by
simp only [insert_in_list]
rw [insert_in_list_loop]
conv => rhs; ext; simp [*]
progress keep as heq as ⟨ b, hi ⟩
simp only [insert_in_list] at heq
exists b
-- Variation: use tactics from the beginning
theorem insert_in_list_spec2 {α : Type} (key: Usize) (value: α) (ls: List α) :
∃ b,
insert_in_list α key value ls = ret b ∧
(b ↔ (ls.lookup key = none))
:= by
induction ls
case Nil => simp [insert_in_list, insert_in_list_loop]
case Cons k v tl ih =>
simp only [insert_in_list]
rw [insert_in_list_loop]
simp only
if h: k = key then
simp [h]
else
conv => rhs; ext; left; simp [h] -- TODO: Simplify
simp only [insert_in_list] at ih;
-- TODO: give the possibility of using underscores
progress as ⟨ b, h ⟩
simp [*]
def distinct_keys (ls : Core.List (Usize × α)) := ls.pairwise_rel (λ x y => x.fst ≠ y.fst)
def hash_mod_key (k : Usize) (l : Int) : Int :=
match hash_key k with
| .ret k => k.val % l
| _ => 0
def slot_s_inv_hash (l i : Int) (ls : Core.List (Usize × α)) : Prop :=
ls.allP (λ (k, _) => hash_mod_key k l = i)
@[simp]
def slot_s_inv (l i : Int) (ls : Core.List (Usize × α)) : Prop :=
distinct_keys ls ∧
slot_s_inv_hash l i ls
def slot_t_inv (l i : Int) (s : List α) : Prop := slot_s_inv l i s.v
theorem insert_in_list_back_spec_aux {α : Type} (l : Int) (key: Usize) (value: α) (l0: List α)
(hinv : slot_s_inv_hash l (hash_mod_key key l) l0.v)
(hdk : distinct_keys l0.v) :
∃ l1,
insert_in_list_back α key value l0 = ret l1 ∧
-- We update the binding
l1.lookup key = value ∧
(∀ k, k ≠ key → l1.lookup k = l0.lookup k) ∧
-- We preserve part of the key invariant
slot_s_inv_hash l (hash_mod_key key l) l1.v ∧
-- Reasoning about the length
(match l0.lookup key with
| none => l1.len = l0.len + 1
| some _ => l1.len = l0.len) ∧
-- The keys are distinct
distinct_keys l1.v ∧
-- We need this auxiliary property to prove that the keys distinct properties is preserved
(∀ k, k ≠ key → l0.v.allP (λ (k1, _) => k ≠ k1) → l1.v.allP (λ (k1, _) => k ≠ k1))
:= match l0 with
| .Nil => by checkpoint
simp (config := {contextual := true})
[insert_in_list_back, insert_in_list_loop_back,
List.v, slot_s_inv_hash, distinct_keys, List.pairwise_rel]
| .Cons k v tl0 =>
if h: k = key then by checkpoint
simp [insert_in_list_back]
rw [insert_in_list_loop_back]
simp [h]
split_conjs
. intros; simp [*]
. simp [List.v, slot_s_inv_hash] at *
simp [*]
. simp [*, distinct_keys] at *
apply hdk
. tauto
else by checkpoint
simp [insert_in_list_back]
rw [insert_in_list_loop_back]
simp [h]
have : slot_s_inv_hash l (hash_mod_key key l) (List.v tl0) := by checkpoint
simp_all [List.v, slot_s_inv_hash]
have : distinct_keys (List.v tl0) := by checkpoint
simp [distinct_keys] at hdk
simp [hdk, distinct_keys]
progress keep as heq as ⟨ tl1 .. ⟩
simp only [insert_in_list_back] at heq
have : slot_s_inv_hash l (hash_mod_key key l) (List.v (List.Cons k v tl1)) := by checkpoint
simp [List.v, slot_s_inv_hash] at *
simp [*]
have : distinct_keys ((k, v) :: List.v tl1) := by checkpoint
simp [distinct_keys] at *
simp [*]
-- TODO: canonize addition by default?
simp_all [Int.add_assoc, Int.add_comm, Int.add_left_comm]
end HashMap
end hashmap
|