summaryrefslogtreecommitdiff
path: root/tests/lean/Hashmap/Properties.lean
blob: de6bf636dc2d09139c60f2988a7019dccd27eadc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import Hashmap.Funs

open Primitives
open Result

namespace List

-- TODO: we don't want to use the original List.lookup because it uses BEq
-- TODO: rewrite rule: match x == y with ... -> if x = y then ... else ... ? (actually doesn't work because of sugar)
-- TODO: move?
@[simp]
def lookup' {α : Type} (ls: _root_.List (Usize × α)) (key: Usize) : Option α :=
  match ls with
  | [] => none
  | (k, x) :: tl => if k = key then some x else lookup' tl key

end List

namespace hashmap

namespace List

def v {α : Type} (ls: List α) : _root_.List (Usize × α) :=
  match ls with
  | Nil => []
  | Cons k x tl => (k, x) :: v tl

@[simp] theorem v_nil (α : Type) : (Nil : List α).v = [] := by rfl
@[simp] theorem v_cons {α : Type} k x (tl: List α) : (Cons k x tl).v = (k, x) :: v tl := by rfl

@[simp]
abbrev lookup {α : Type} (ls: List α) (key: Usize) : Option α :=
  ls.v.lookup' key

@[simp]
abbrev len {α : Type} (ls : List α) : Int := ls.v.len

end List

namespace HashMap

abbrev Core.List := _root_.List

namespace List

end List

-- TODO: move
@[simp] theorem neq_imp_nbeq [BEq α] [LawfulBEq α] (x y : α) (heq : ¬ x = y) : ¬ x == y := by simp [*]
@[simp] theorem neq_imp_nbeq_rev [BEq α] [LawfulBEq α] (x y : α) (heq : ¬ x = y) : ¬ y == x := by simp [*]

-- TODO: move
-- TODO: this doesn't work because of sugar
theorem match_lawful_beq [BEq α] [LawfulBEq α] [DecidableEq α] (x y : α) :
  (x == y) = (if x = y then true else false) := by
  split <;> simp_all

theorem insert_in_list_spec0 {α : Type} (key: Usize) (value: α) (ls: List α) :
   b,
    insert_in_list α key value ls = ret b 
    (b  ls.lookup key = none)
  := match ls with
  | .Nil => by simp [insert_in_list, insert_in_list_loop]
  | .Cons k v tl =>
    if h: k = key then -- TODO: The order of k/key matters
      by
        simp [insert_in_list]
        rw [insert_in_list_loop]
        simp [h]
    else
      have  b, hi  := insert_in_list_spec0 key value tl
      by
        exists b
        simp [insert_in_list]
        rw [insert_in_list_loop] -- TODO: Using simp leads to infinite recursion
        simp only [insert_in_list] at hi
        simp [*]

-- Variation: use progress
theorem insert_in_list_spec1 {α : Type} (key: Usize) (value: α) (ls: List α) :
   b,
    insert_in_list α key value ls = ret b 
    (b  ls.lookup key = none)
  := match ls with
  | .Nil => by simp [insert_in_list, insert_in_list_loop]
  | .Cons k v tl =>
    if h: k = key then -- TODO: The order of k/key matters
      by
        simp [insert_in_list]
        rw [insert_in_list_loop]
        simp [h]
    else
      by
        simp only [insert_in_list]
        rw [insert_in_list_loop]
        conv => rhs; ext; simp [*]
        progress keep as heq as  b, hi 
        simp only [insert_in_list] at heq
        exists b

-- Variation: use tactics from the beginning
theorem insert_in_list_spec2 {α : Type} (key: Usize) (value: α) (ls: List α) :
   b,
    insert_in_list α key value ls = ret b 
    (b  (ls.lookup key = none))
  := by
  induction ls
  case Nil => simp [insert_in_list, insert_in_list_loop]
  case Cons k v tl ih =>
    simp only [insert_in_list]
    rw [insert_in_list_loop]
    simp only
    if h: k = key then
     simp [h]
    else
     conv => rhs; ext; left; simp [h] -- TODO: Simplify
     simp only [insert_in_list] at ih;
     -- TODO: give the possibility of using underscores
     progress as  b, h 
     simp [*]

def distinct_keys (ls : Core.List (Usize × α)) := ls.pairwise_rel (λ x y => x.fst  y.fst)

def hash_mod_key (k : Usize) (l : Int) : Int :=
  match hash_key k with
  | .ret k => k.val % l
  | _ => 0

def slot_s_inv_hash (l i : Int) (ls : Core.List (Usize × α)) : Prop :=
  ls.allP (λ (k, _) => hash_mod_key k l = i)

@[simp]
def slot_s_inv (l i : Int) (ls : Core.List (Usize × α)) : Prop :=
  distinct_keys ls 
  slot_s_inv_hash l i ls

def slot_t_inv (l i : Int) (s : List α) : Prop := slot_s_inv l i s.v

theorem insert_in_list_back_spec_aux {α : Type} (l : Int) (key: Usize) (value: α) (l0: List α)
  (hinv : slot_s_inv_hash l (hash_mod_key key l) l0.v)
  (hdk : distinct_keys l0.v) :
   l1,
    insert_in_list_back α key value l0 = ret l1 
    -- We update the binding
    l1.lookup key = value 
    ( k, k  key  l1.lookup k = l0.lookup k) 
    -- We preserve part of the key invariant
    slot_s_inv_hash l (hash_mod_key key l) l1.v 
    -- Reasoning about the length
    (match l0.lookup key with
     | none => l1.len = l0.len + 1
     | some _ => l1.len = l0.len) 
    -- The keys are distinct
    distinct_keys l1.v 
    -- We need this auxiliary property to prove that the keys distinct properties is preserved
    ( k, k  key  l0.v.allP (λ (k1, _) => k  k1)  l1.v.allP (λ (k1, _) => k  k1))
  := match l0 with
  | .Nil => by checkpoint
    simp (config := {contextual := true})
      [insert_in_list_back, insert_in_list_loop_back,
       List.v, slot_s_inv_hash, distinct_keys, List.pairwise_rel]
  | .Cons k v tl0 =>
     if h: k = key then by checkpoint
       simp [insert_in_list_back]
       rw [insert_in_list_loop_back]
       simp [h]
       split_conjs
       . intros; simp [*]
       . simp [List.v, slot_s_inv_hash] at *
         simp [*]
       . simp [*, distinct_keys] at *
         apply hdk
       . tauto
     else by checkpoint
       simp [insert_in_list_back]
       rw [insert_in_list_loop_back]
       simp [h]
       have : slot_s_inv_hash l (hash_mod_key key l) (List.v tl0) := by checkpoint
         simp_all [List.v, slot_s_inv_hash]
       have : distinct_keys (List.v tl0) := by checkpoint
         simp [distinct_keys] at hdk
         simp [hdk, distinct_keys]
       progress keep as heq as  tl1 .. 
       simp only [insert_in_list_back] at heq
       have : slot_s_inv_hash l (hash_mod_key key l) (List.v (List.Cons k v tl1)) := by checkpoint
         simp [List.v, slot_s_inv_hash] at *
         simp [*]
       have : distinct_keys ((k, v) :: List.v tl1) := by checkpoint
         simp [distinct_keys] at *
         simp [*]
       -- TODO: canonize addition by default?
       simp_all [Int.add_assoc, Int.add_comm, Int.add_left_comm]

end HashMap

end hashmap