summaryrefslogtreecommitdiff
path: root/tests/lean/Hashmap/Properties.lean
blob: 40b5009df081aec8a5168c3d141281c2e1459f22 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import Hashmap.Funs

open Primitives
open Result

namespace List

-- TODO: we don't want to use the original List.lookup because it uses BEq
-- TODO: rewrite rule: match x == y with ... -> if x = y then ... else ... ? (actually doesn't work because of sugar)
-- TODO: move?
@[simp]
def lookup' {α : Type} (ls: _root_.List (Usize × α)) (key: Usize) : Option α :=
  match ls with
  | [] => none
  | (k, x) :: tl => if k = key then some x else lookup' tl key

end List

namespace hashmap

namespace List

def v {α : Type} (ls: List α) : _root_.List (Usize × α) :=
  match ls with
  | Nil => []
  | Cons k x tl => (k, x) :: v tl

@[simp] theorem v_nil (α : Type) : (Nil : List α).v = [] := by rfl
@[simp] theorem v_cons {α : Type} k x (tl: List α) : (Cons k x tl).v = (k, x) :: v tl := by rfl

@[simp]
abbrev lookup {α : Type} (ls: List α) (key: Usize) : Option α :=
  ls.v.lookup' key

@[simp]
abbrev len {α : Type} (ls : List α) : Int := ls.v.len

end List

namespace HashMap

abbrev Core.List := _root_.List

namespace List

end List

-- TODO: move
@[simp] theorem neq_imp_nbeq [BEq α] [LawfulBEq α] (x y : α) (heq : ¬ x = y) : ¬ x == y := by simp [*]
@[simp] theorem neq_imp_nbeq_rev [BEq α] [LawfulBEq α] (x y : α) (heq : ¬ x = y) : ¬ y == x := by simp [*]

-- TODO: move
-- TODO: this doesn't work because of sugar
theorem match_lawful_beq [BEq α] [LawfulBEq α] [DecidableEq α] (x y : α) :
  (x == y) = (if x = y then true else false) := by
  split <;> simp_all

@[pspec]
theorem insert_in_list_spec0 {α : Type} (key: Usize) (value: α) (ls: List α) :
   b,
    insert_in_list α key value ls = ret b 
    (b  ls.lookup key = none)
  := match ls with
  | .Nil => by simp [insert_in_list, insert_in_list_loop]
  | .Cons k v tl =>
    if h: k = key then -- TODO: The order of k/key matters
      by
        simp [insert_in_list]
        rw [insert_in_list_loop]
        simp [h]
    else
      have  b, hi  := insert_in_list_spec0 key value tl
      by
        exists b
        simp [insert_in_list]
        rw [insert_in_list_loop] -- TODO: Using simp leads to infinite recursion
        simp only [insert_in_list] at hi
        simp [*]

-- Variation: use progress
theorem insert_in_list_spec1 {α : Type} (key: Usize) (value: α) (ls: List α) :
   b,
    insert_in_list α key value ls = ret b 
    (b  ls.lookup key = none)
  := match ls with
  | .Nil => by simp [insert_in_list, insert_in_list_loop]
  | .Cons k v tl =>
    if h: k = key then -- TODO: The order of k/key matters
      by
        simp [insert_in_list]
        rw [insert_in_list_loop]
        simp [h]
    else
      by
        simp only [insert_in_list]
        rw [insert_in_list_loop]
        conv => rhs; ext; simp [*]
        progress keep as heq as  b, hi 
        simp only [insert_in_list] at heq
        exists b

-- Variation: use tactics from the beginning
theorem insert_in_list_spec2 {α : Type} (key: Usize) (value: α) (ls: List α) :
   b,
    insert_in_list α key value ls = ret b 
    (b  (ls.lookup key = none))
  := by
  induction ls
  case Nil => simp [insert_in_list, insert_in_list_loop]
  case Cons k v tl ih =>
    simp only [insert_in_list]
    rw [insert_in_list_loop]
    simp only
    if h: k = key then
     simp [h]
    else
     conv => rhs; ext; left; simp [h] -- TODO: Simplify
     simp only [insert_in_list] at ih;
     -- TODO: give the possibility of using underscores
     progress as  b, h 
     simp [*]

def distinct_keys (ls : Core.List (Usize × α)) := ls.pairwise_rel (λ x y => x.fst  y.fst)

def hash_mod_key (k : Usize) (l : Int) : Int :=
  match hash_key k with
  | .ret k => k.val % l
  | _ => 0

@[simp]
theorem hash_mod_key_eq : hash_mod_key k l = k.val % l := by
  simp [hash_mod_key, hash_key]

def slot_s_inv_hash (l i : Int) (ls : Core.List (Usize × α)) : Prop :=
  ls.allP (λ (k, _) => hash_mod_key k l = i)

@[simp]
def slot_s_inv (l i : Int) (ls : Core.List (Usize × α)) : Prop :=
  distinct_keys ls 
  slot_s_inv_hash l i ls

def slot_t_inv (l i : Int) (s : List α) : Prop := slot_s_inv l i s.v

-- Interpret the hashmap as a list of lists
def v (hm : HashMap α) : Core.List (Core.List (Usize × α)) :=
  hm.slots.val.map List.v

-- Interpret the hashmap as an associative list
def al_v (hm : HashMap α) : Core.List (Usize × α) :=
  hm.v.flatten

-- TODO: automatic derivation
instance : Inhabited (List α) where
  default := .Nil

@[simp]
def slots_s_inv (s : Core.List (List α)) : Prop :=
   (i : Int), 0  i  i < s.len  slot_t_inv s.len i (s.index i)

def slots_t_inv (s : Vec (List α)) : Prop :=
  slots_s_inv s.v

@[simp]
def base_inv (hm : HashMap α) : Prop :=
  -- [num_entries] correctly tracks the number of entries
  hm.num_entries.val = hm.al_v.len 
  -- Slots invariant
  slots_t_inv hm.slots 
  -- The capacity must be > 0 (otherwise we can't resize)
  0 < hm.slots.length
  -- TODO: load computation

def inv (hm : HashMap α) : Prop :=
  -- Base invariant
  base_inv hm
  -- TODO: either the hashmap is not overloaded, or we can't resize it

theorem insert_in_list_back_spec_aux {α : Type} (l : Int) (key: Usize) (value: α) (l0: List α)
  (hinv : slot_s_inv_hash l (hash_mod_key key l) l0.v)
  (hdk : distinct_keys l0.v) :
   l1,
    insert_in_list_back α key value l0 = ret l1 
    -- We update the binding
    l1.lookup key = value 
    ( k, k  key  l1.lookup k = l0.lookup k) 
    -- We preserve part of the key invariant
    slot_s_inv_hash l (hash_mod_key key l) l1.v 
    -- Reasoning about the length
    (match l0.lookup key with
     | none => l1.len = l0.len + 1
     | some _ => l1.len = l0.len) 
    -- The keys are distinct
    distinct_keys l1.v 
    -- We need this auxiliary property to prove that the keys distinct properties is preserved
    ( k, k  key  l0.v.allP (λ (k1, _) => k  k1)  l1.v.allP (λ (k1, _) => k  k1))
  := match l0 with
  | .Nil => by checkpoint
    simp (config := {contextual := true})
      [insert_in_list_back, insert_in_list_loop_back,
       List.v, slot_s_inv_hash, distinct_keys, List.pairwise_rel]
  | .Cons k v tl0 =>
     if h: k = key then by checkpoint
       simp [insert_in_list_back]
       rw [insert_in_list_loop_back]
       simp [h]
       split_conjs
       . intros; simp [*]
       . simp [List.v, slot_s_inv_hash] at *
         simp [*]
       . simp [*, distinct_keys] at *
         apply hdk
       . tauto
     else by checkpoint
       simp [insert_in_list_back]
       rw [insert_in_list_loop_back]
       simp [h]
       have : slot_s_inv_hash l (hash_mod_key key l) (List.v tl0) := by checkpoint
         simp_all [List.v, slot_s_inv_hash]
       have : distinct_keys (List.v tl0) := by checkpoint
         simp [distinct_keys] at hdk
         simp [hdk, distinct_keys]
       progress keep as heq as  tl1 .. 
       simp only [insert_in_list_back] at heq
       have : slot_s_inv_hash l (hash_mod_key key l) (List.v (List.Cons k v tl1)) := by checkpoint
         simp [List.v, slot_s_inv_hash] at *
         simp [*]
       have : distinct_keys ((k, v) :: List.v tl1) := by checkpoint
         simp [distinct_keys] at *
         simp [*]
       -- TODO: canonize addition by default?
       simp_all [Int.add_assoc, Int.add_comm, Int.add_left_comm]

@[pspec]
theorem insert_in_list_back_spec {α : Type} (l : Int) (key: Usize) (value: α) (l0: List α)
  (hinv : slot_s_inv_hash l (hash_mod_key key l) l0.v)
  (hdk : distinct_keys l0.v) :
   l1,
    insert_in_list_back α key value l0 = ret l1 
    -- We update the binding
    l1.lookup key = value 
    ( k, k  key  l1.lookup k = l0.lookup k) 
    -- We preserve part of the key invariant
    slot_s_inv_hash l (hash_mod_key key l) l1.v 
    -- Reasoning about the length
    (match l0.lookup key with
     | none => l1.len = l0.len + 1
     | some _ => l1.len = l0.len) 
    -- The keys are distinct
    distinct_keys l1.v
  := by
  progress with insert_in_list_back_spec_aux as  l1 .. 
  exists l1

@[simp]
def slots_t_lookup (s : Core.List (List α)) (k : Usize) : Option α :=
  let i := hash_mod_key k s.len
  let slot := s.index i
  slot.lookup k

def lookup (hm : HashMap α) (k : Usize) : Option α :=
  slots_t_lookup hm.slots.val k

@[simp]
abbrev len_s (hm : HashMap α) : Int := hm.al_v.len

-- Remark: α and β must live in the same universe, otherwise the
-- bind doesn't work
theorem if_update_eq
  {α β : Type u} (b : Bool) (y : α) (e : Result α) (f : α  Result β) :
  (if b then Bind.bind e f else f y) = Bind.bind (if b then e else pure y) f
  := by
  split <;> simp [Pure.pure]

theorem insert_no_resize_spec {α : Type} (hm : HashMap α) (key : Usize) (value : α)
  (hinv : hm.inv) (hnsat : hm.lookup key = none  hm.len_s < Usize.max) :
   nhm, hm.insert_no_resize α key value = ret nhm  
  -- We preserve the invariant
  nhm.inv 
  -- We updated the binding for key
  nhm.lookup key = some value 
  -- We left the other bindings unchanged
  ( k, ¬ k = key  nhm.lookup k = hm.lookup k) 
  -- Reasoning about the length
  (match hm.lookup key with
   | none => nhm.len_s = hm.len_s + 1
   | some _ => nhm.len_s = hm.len_s) := by
  rw [insert_no_resize]
  simp [hash_key]
  have _ : (Vec.len (List α) hm.slots).val  0 := by checkpoint
   intro
   simp_all [inv]
  -- TODO: progress keep as ⟨ ... ⟩ : conflict
  progress keep as h as  hash_mod, hhm 
  have _ : 0  hash_mod.val := by checkpoint scalar_tac
  have _ : hash_mod.val < Vec.length hm.slots := by
    have : 0 < hm.slots.val.len := by
      simp [inv] at hinv
      simp [hinv]
    -- TODO: we want to automate that
    simp [*, Int.emod_lt_of_pos]
  -- have h := Primitives.Vec.index_mut_spec hm.slots hash_mod
  -- TODO: change the spec of Vec.index_mut to introduce a let-binding.
  -- or: make progress introduce the let-binding by itself (this is clearer)
  progress
  -- TODO: make progress use the names written in the goal
  progress as  inserted 
  rw [if_update_eq] -- TODO: necessary because we don't have a join
  -- TODO: progress to ...
  have hipost :
     i0, (if inserted = true then hm.num_entries + Usize.ofInt 1 else pure hm.num_entries) = ret i0 
    i0.val = if inserted then hm.num_entries.val + 1 else hm.num_entries.val
    := by
    if inserted then
      simp [*]
      have : hm.num_entries.val + (Usize.ofInt 1).val  Usize.max := by
        simp [lookup] at hnsat
        simp_all
        simp [inv] at hinv
        int_tac
      progress
      simp_all
    else
      simp_all [Pure.pure]
  progress as  i0 
  -- TODO: progress "eager" to match premises with assumptions while instantiating
  -- meta-variables
  have h_slot : slot_s_inv_hash hm.slots.length hash_mod.val (hm.slots.v.index hash_mod.val).v := by
    simp [inv] at hinv
    have h := hinv.right.left hash_mod.val (by assumption) (by assumption)
    simp [slot_t_inv] at h
    simp [h]
  have hd : distinct_keys (hm.slots.v.index hash_mod.val).v := by checkpoint
    simp [inv, slots_t_inv, slot_t_inv] at hinv
    have h := hinv.right.left hash_mod.val (by assumption) (by assumption)
    simp [h]
  -- TODO: hide the variables and only keep the props
  -- TODO: allow providing terms to progress to instantiate the meta variables
  -- which are not propositions
  progress as  l0, _, _, _, hlen .. 
  . checkpoint exact hm.slots.length
  . checkpoint simp_all
  . -- Finishing the proof
    progress as  v 
    -- TODO: update progress to automate that
    let nhm : HashMap α := { num_entries := i0, max_load_factor := hm.max_load_factor, max_load := hm.max_load, slots := v }
    exists nhm
    -- TODO: later I don't want to inline nhm - we need to control simp
    have hupdt : lookup nhm key = some value := by checkpoint
      simp [lookup, List.lookup] at *
      simp_all
    have hlkp :  k, ¬ k = key  nhm.lookup k = hm.lookup k := by
      simp [lookup, List.lookup] at *
      intro k hk
      -- We have to make a case disjunction: either the hashes are different,
      -- in which case we don't even lookup the same slots, or the hashes
      -- are the same, in which case we have to reason about what happens
      -- in one slot
      let k_hash_mod := k.val % v.val.len
      have : 0 < hm.slots.val.len := by simp_all [inv]
      have hvpos : 0 < v.val.len := by simp_all
      have hvnz: v.val.len  0 := by
        simp_all
      have _ : 0  k_hash_mod := by
        -- TODO: we want to automate this
        simp
        apply Int.emod_nonneg k.val hvnz
      have _ : k_hash_mod < Vec.length hm.slots := by
        -- TODO: we want to automate this
        simp
        have h := Int.emod_lt_of_pos k.val hvpos
        simp_all
      if h_hm : k_hash_mod = hash_mod.val then
        simp_all
      else
        simp_all
    have _ :
      match hm.lookup key with
      | none => nhm.len_s = hm.len_s + 1
      | some _ => nhm.len_s = hm.len_s := by checkpoint
      simp only [lookup, List.lookup, len_s, al_v, HashMap.v, slots_t_lookup] at *
      -- We have to do a case disjunction
      simp_all
      simp [_root_.List.update_map_eq]
      -- TODO: dependent rewrites
      have _ : key.val % hm.slots.val.len < (List.map List.v hm.slots.val).len := by
        simp [*]
      simp [_root_.List.len_flatten_update_eq, *]
      split <;>
      rename_i heq <;>
      simp [heq] at hlen <;>
      -- TODO: canonize addition by default? We need a tactic to simplify arithmetic equalities
      -- with addition and substractions ((ℤ, +) is a ring or something - there should exist a tactic
      -- somewhere in mathlib?)
      simp [Int.add_assoc, Int.add_comm, Int.add_left_comm] <;>
      int_tac
    have hinv : inv nhm := by
      simp [inv] at *
      split_conjs
      . match h: lookup hm key with
        | none =>
          simp [h, lookup] at *
          simp_all
        | some _ =>
          simp_all [lookup]
      . simp [slots_t_inv, slot_t_inv] at *
        intro i hipos _
        have _ := hinv.right.left i hipos (by simp_all)
        -- We need a case disjunction
        if i = key.val % _root_.List.len hm.slots.val then
          simp_all
        else
          simp_all
      . simp_all
    simp_all

end HashMap

end hashmap